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Abstract 

Choosing one option from a sequence of pos­
sibilities seen one at a time is a common prob­
lem facing agents whenever resources, such as 
mates or habitats, are distributed in time or 
space. Optimal algorithms have been developed 
for solving a form of this sequential search task 
known as the Dowry Problem (finding the high­
est dowry in a sequence of 100 values); here we 
explore whether continuous time recurrent neu­
ral networks (CTRNNs) can be evolved to per­
form adaptively in Dowry Problem scenarios, as 
an example of minimally cognitive behavior [Beer, 
1996]. We show that even 4-neuron CTRNNs can 
successfully solve this sequential search problem, 
and we offer some initial analysis of how they can 
achieve this feat. 

1 Introduction 

Life does not always present us with choices in the most 
convenient form. Rather than give us a supermarket of 
options to compare and choose between at our leisure -
"pick a card, any card" - the world often conspires to 
confront us with a single possibility at a time - "take 
it or leave it" . Another better option might come along 
later, but then again, it might not. This type of sequen­
tial choice problem can be encountered in searching for 
a job, or a place to live, or even a mate, when possibil­
ities are seen one at a time and cannot be kept around 
for comparison to later options - the job, or house, or 
date you turn down today won't be waiting for you to­
morrow. More generally, agents may have to deal with 
such sequential choice whenever resources they need are 
distributed in time or space: Should this prey item be 
pursued, or will a better one be found over the hill 
Should this mate be courted, or will my genes stand a 

better chance with another individual later 

ow can such a decision be made? This problem has 
been studied widely in statistics, economics, psychology, 
and other fields, and both optimal and non-optimal but 
reasonable approaches have been proposed, as we will 
discuss. But these proposals have all been made at the 
level of concrete symbolic information-processing algo­
rithms: check this item, update that aspiration level. 
We wanted instead to find out whether lower-level sub­
symbolic dynamic systems of the sort proposed for bi­
ologically plausible agent architectures could also solve 
this problem, and explore what kinds of solutions evolu­
tion could find within this framework. Inspired by pre­
vious research on minimally cognitive behavior [Beer, 
1996; Slocum et al., 2000], we set out to evolve continu­
ous time recurrent neural networks (CTRNNs) that can 
deal with this important cognitive task of finding good 
options from sequences of possibilities. 

1.1 The Dowry Problem 

To study behavioral approaches to the problem of se­
quential choice, it is useful to take a well-specified form 
of the problem as a starting point. Probably the best­
studied example of sequential search is captured in the 
Dowry Problem, in which the task is to select the woman 
with the highest dowry (money brought to a marriage) 
out of a sequence of 100, or its alternate form, the Sec­
retary Problem, in which the goal is to select the best 
secretary (e.g. on typing speed) out of 100 applicants 
seen one at a time. In more detail (and with sex roles re­
versed and species changed for variety), the Dowry Prob­
lem goes like this: 

A young female hangingfly wishes to find a mate, but 
she has many suitors to choose from. Male hangingflies 
attempt to woo her by offering her a nuptial gift (the 
equivalent of female dowries): an insect or other tasty 
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morsel for her to dine on while the male goes about his 
inseminating business unnoticed. (From this point on we 
begin to take liberties with the true situation in nature 
for the purposes of formulating the problem properly -
see Preston-Mafham and Preston-Mafham [1993] for the 
more peculiar real story.) She must choose a single male 
to mate with on the basis of the size of the nuptial gift 
he brings her. er life is short, so she only has time 
to evaluate 100 of the eager males visiting her on her 
chosen leaf before she runs out of lifespan in which to 
mate successfully. Now her task in this problem is to 
select the one male, out of the 100 that she can possibly 
see, who has the biggest nuptial gift to offer her 1 . She 
can only see one male and his gift at a time, and then she 
must decide immediately if she thinks he is the one with 
the biggest nuptial gift out of all 100 males and accept 
his advances, or else rebuff him and go on to the next 
candidate. She cannot return to any male she has seen 
before - once she rejects them, they are gone forever. 
Moreover, the poor female has no idea of the range of 
gift sizes she might encounter, before she starts seeing 
the males - all of the males might be bringing fleas this 
season, or one might have bagged a whole rhino. \Vhat 
strategy can she possibly use to have the highest chance 
of picking the male with the biggest gift for her? 

The Dowry Problem can be considered a formal model 
of many real-world decision problems, in which agents 
encounter options in temporal sequence, appearing in 
random order, drawn from a population with param­
eters that are partially or completely unknown ahead 
of time. What strategy can the agents possibly use to 
maximize the expected payoff or to minimize the ex­
pected cost associated with their choice? This general 
question has motivated research in statistics and prob­
ability theory [Ferguson, 1989], economics [Seale and 
Rapoport, 1997], and biology and psychology [Todd and 
Miller, 1999; Dudey and Todd, In Press]. Statisticians 
and economists tend to develop optimality theorems rel­
evant to job search and consumer search. In biology 
and psychology, more psychologically plausible rules or 
heuristics for sequential choice have been proposed and 
investigated, decision algorithms that are not guaranteed 
to yield the highest likelihood of a best choice but which 
generally do a good job. Many of these studies focus on 
the problem of sequential mate search and mate choice, 
because of the evolutionary importance of this domain. 

1.2 Structure of the paper 

The Dowry Problem is a useful setting in which to ex­
plore the minimal cognitive mechanisms necessary to 

1 Note that realistically she could do well to pick any male with 
a big-enough gift, and that evolution's goal would probably be to 
endow her with a way of picking large gifts on average. This is the 
payoff function we will explore in more detail later in the paper, but 
the original Dowry Problem is stated in terms of an all-or-nothing 
payoff, rewarding onl y  selection of the single highest value. 

tackle the problem of sequential choice. To find such 
minimal cognitive mechanisms, we adopt the framework 
of evolutionary simulation, modelling the process of nat­
ural selection [ olland, 1975; DiPaolo et al., 2000] ap­
plied to dynamic neural networks as abstract instantia­
tions of an agent's decision making structure. \Ve take 
an evolutionary approach because it allows the explo­
ration of possible cognitive architectures relatively un­
encumbered by a priori assumptions [Cliff et al., 1993; 
Cliff and Miller, 1996; Seth, 1998; Nolfi and Floreano, 
2000]. As already pointed out by Slocum et al. [2000], 
these simple idealized models can serve as "frictionless 
planes" in which basic theoretical principles of the dy­
namics of agent-environment systems can be worked out. 

In the next section, we present the analytic solution 
for the Dowry Problem and discuss the minimal cognitive 
requirements for this solution. In section 3 we describe 
our simulation for evolving Continuous Time Recurrent 
Neural Networks (CTRNNs) [Beer and Gallagher, 1992] 
with a genetic algorithm [Goldberg, 1989] to implement 
sequential choice strategies for the Dowry Problem. In 
section 4 the performance of the best evolved neural net­
works is analyzed and compared with the performance of 
some standard sequential choice algorithms. We demon­
strate that the evolved CTRNNs can successfully deal 
with the slightly modified and more biologically plausi­
ble versions of the Dowry Problem in which perfection 
is not strictly required. Within these contexts, the neu­
ral network performance can actually surpass that of the 
standard strategies. Further analysis in section 5 gives 
some hints as to how the networks perform their search. 
Finally, we consider the implications of this work in sec­
tion 6. 

2 Solving the Dowry Problem 

Roughly speaking, the Dowry Problem refers to a class 
of problems in which an agent has to maximize (or min­
imize) the expected payoff (or cost) given by choosing 
a single item from among a population of sequentially 
encountered items. The Dowry Problem is easy to state 
and has a striking solution. In its simplest form it has 
the following features2

: 

1. The agent (e.g., the female hangingfly) can make only 
one choice. 

2. The number n of items in the population (e.g., num­
ber of males) is known. 

3. The items are presented sequentially in random or­
der, with each order being equally likely. 

4. The items can be ranked from the best to the worst, 
without ties, according to a specific criterion (e.g., 

2 This formal description has been taken from [Ferguson, 1989] 
in which the problem is presented via its alter ago, the Secretary 
Problem. 



size of nuptial gift). The decision to accept or reject 
an item must be based only on the relative ranks of 
those items presented so far. 

a. Once an item is rejected, it cannot later be recalled 
(returned to). 

6. The agent is very particular and will be satisfied with 
nothing but the very best item. (That is, the hang­
ingfly's payoff is 1 - e.g., numerous offspring - if 
she chooses the best of the n males, and 0 - e.g., 
single death - otherwise). 

7. If the agent does not make any choice before the end 
of the sequence, he or she must take the final option. 

Agents facing the Dowry Problem seek perfection, 
with a payoff of one only for picking the very best item 
(highest dowry or biggest nuptial gift) and zero for pick­
ing anything else. They also ignore search costs such as 
time, ignore the problem of mutual choice (i.e., the pos­
sibility that the male hangingfly that the female selects 
will not agree to mate with her in return), and assume 
that they know the exact number of items that will be 
presented. 

The solution to the Dowry Problem - that is, the 
strategy that gives the highest chance of selecting the 
single best option - requires sampling a certain initial 
subset of the population of items r - 1 with r E [l, n -

1], remembering the best of them, and then picking the 
next item that is even better [Ferguson, 1989]. It can be 
shown that for large n, it is optimal to wait until about 
37% (i.e., 1 /e) of the population have been seen and then 
to select the next option encountered that is better than 
any seen previously. The probability of success in this 
case is also about 37%. For small values of n, the optimal 
r is the one that maximizes the probability <Pn(r), where 

One simple way to accomplish this optimal procedure 
is to set an aspiration level equal to the quality of the 
best option seen so far, updating this aspiration level 
as necessary as each new option is seen; then after 37% 
of the population has been encountered, fix this aspira­
tion level and use it to stop the search with the next 
option seen that exceeds that aspiration. This approach 
is akin to erbert Simon's notion of satisficing [Simon, 
1990], and is what Seale and Rapoport refer to as a cut­
off rule [Seale and Rapoport, 1997]. Thus, given that 
the searching agent knows the optimal 37% sample size 
- which assumes that the searcher first knows the total 
number of options n that could be encountered - fol­
lowing this .17% rule is simple. The searcher must only 
keep in memory the optimal (37%) sample size and the 
quality of the best option seen so far. With each new 
option seen, a simple pair of comparisons (whether the 

option's quality exceeds the aspiration level, and whether 
the sequence-position number of that option exceeds the 
37% value) is sufficient to decide whether to stop or con­
tinue search. 

In a repeated version of the Dowry Problem where 
an agent sees multiple sequences and must choose the 
best value in each one independently, the agent must 
also be able to respond differently to the same item 
seen in different sequences, as a consequence of the fact 
that the item's relative ranking will vary across the se­
quences. This is an instance of the problem generally 
known as sensory aliasing [Nolfi and Marocco, 2001]. 
Sensory aliasing refers to the situation wherein two or 
more agent/environment states correspond to the same 
sensor pattern but require different responses. An agent 
that repeatedly plays the Dowry Problem game might 
encounter an item which is the best choice in one popula­
tion and also the worst in a different population. An op­
timal strategy in this case should aim to select the item 
in the former case, and reject the same item in the latter. 
The analytic solution given above explicitly includes the 
memory and "behavioral plasticity" that is required for 
an agent to perform optimally when faced with multiple 
cases of the Dowry Problem. Our abstract model of the 
agent's decision making structure (i.e., CTRNNs) does 
not explicitly include these requirements. The challenge 
is for evolution to shape such a dynamic system so that 
its performance will compare favorably with that of the 
optimal strategy. 

3 Evolving CTRNNs for the Dowry 
Problem 

3.1 Overview of the evolutionary scenario 

We evolve a population of CTRNNs to maximize the 
expected payoff given by choosing one item among a 
sequence of 20 items, where payoff is proportional to 
the relative rank (on some criterion) of the item cho­
sen. ( ere we use the term "rank" in the opposite of 
its usual sense - higher rank-numbers are better, and 
give higher payoffs.) The items are presented (see sec­
tion 3.4) sequentially in random order, each order being 
equally likely. The network has to "decide" immediately 
after an item has been presented whether or not to select 
that item. A binary thresholded output neuron signals 
the decision of the network (see section 3.3). If, after the 
item is presented, the output neuron holds an activation 
value of 1, this item is chosen. If the output neuron 
holds 0, a new item is presented. Once rejected, an item 
cannot be recalled. The presentation of items is stopped 
either when the network selects an item or after the last 
of the 20 items is introduced; if the network does not 
select any item before the end of the sequence, the last 
item is taken as the network's choice. Then, the network 
is scored according to the relative ranking of the chosen 



item (see section 3.5). After that, the network is reset 
(see section 3.3), and a new sequence can be presented. 

Our evolutionary scenario differs from the Dowry 
Problem mainly in the rank-proportional payoff function 
used (as opposed to the original all-or-nothing payoff). 
While picking the single best item yields the highest pay­
off, choosing the second best gives a somewhat reduced 
(but non-zero) payoff, picking the third gives slightly less 
than the second, and so on. This "friendlier" payoff func­
tion was used both because it is more realistic (see sec­
tion 4.1), and because it proved to allow for much easier 
evolution of the networks. Aside from this, our scenario 
follows the Dowry Problem, with items simply being in­
teger numbers randomly drawn from a pre-defined range 
(see section 3.2). Each network is evaluated on 60 differ­
ent populations of items; we refer to each presentation 
of a sequence from a population of items as a trial. The 
60 trials differ in the range from which their 20 numbers 
are drawn. Between any two trials there may be some 
sensory aliasing, in that the same items can occur in each 
trial but with a different ranking (a specific example is 
shown in the next section). 

3.2 How item value.s are drawn 

The networks are run through 60 independent trials 
(Tc, c = 1, ..., 60), each of which is made up of 20 inte­
gers. The integers are randomly drawn without replace­
ment from a uniform distribution on the interval [le, hcl , 
with the lowest number le and the highest number he of 
the range defined by the following rule: 

While the networks see the trials in the simulation in 
order from the first to the sixtieth, this order is irrele­
vant, because the networks are reset (see section 3.3) at 
the beginning of every trial. (This of course cannot be 
done so easily for human subjects in Dowry Problem ex­
periments, where great care must be taken to randomize 
the order of presentation of multiple trials, or to limit 
the experiment to a very small number of trials.) 

Among all the trials, the lowest number that the net­
works can possibly experience is li = 1 and the highest 
is h6o = 89. Values between 20 and 70 can be both the 
lowest within a trial and the highest within a different 
trial, while values between 2 and 88 can have a differ­
ent ranking in different trials. The greatest amount of 
sensory aliasing between two trials occurs when they are 
consecutive (e.g., trials Tc and Tc+1); if two trials are 
more then 30 steps away from each other (e.g., Tc and 
Tc+3o), they are certain to be made up of completely dif­
ferent items, so that no sensory aliasing exists between 
them. 

Table 1 shows an example of two possible sequences of 
item-values that could occur on the first trial (Ti) and 

Rank values Rank values 

T1 T2 s T1 T2s 
1 4 28 11 16 44 
2 5 33 12 17 46 
3 6 35 13 18 47 
4 7 36 14 21 48 
5 9 37 15 22 49 
6 10 39 16 23 50 
7 11 40 17 24 51 
8 12 41 18 25 52 
9 13 42 19 27 53 
10 14 43 20 28 57 

Table 1: Two example trials of 20 values each, showing sen­

sory aliasing owing to the value 28 being the highest-ranked 

item in the first trial and the lowest-ranked item in the sec­

ond. 

the 28th trial (T28) . The value 28 is an item in both 
populations, but in T1 it is the best item, whereas in T28 

it is the worst, yielding a very different rank-based score 
if it is chosen in the two trials. This is an example of 
sensory aliasing, because the network should select this 
item in T1 and reject it in T2s . 

3.3 The structure of the networks 

We model the agent decision-making mechanisms as fully 
connected, 4 neuron CTRNNs. All neurons are governed 
by the following state equation: 

with Zj = l+exp[-\JJj+Bj)), i = 1, . .., 4 

where, using terms derived from analogy with real neu­
rons, Yi represents the cell potential, T; is the decay con­
stant, Wji is the strength of synaptic connection from 
neuron j to neuron i, k corresponds to the number of 
input connections to neuron i both from other neurons 
and from itself, Zj is the firing rate, I; is the intensity 
of the sensory perturbation on sensory neuron i, g is 
the sensory gain factor, and fJj is a bias term. Only one 
neuron actually receives sensory perturbation in the net­
works we started with. There is also one output neuron 
that registers the network response. This neuron has a 
thresholded binary activation function: it will output O if 
its y-value ("cell-potential") is less than 0.5, otherwise it 
will output 1. The strength of synaptic connections Wj;, 
the decay constant T1 , the bias term fii, and the gain fac­
tor g are genetically encoded parameters. Activation lev­
els are integrated using the forward Euler method with 
an integration step-size of 0.2, which means that there 
are 5 updates of the network per second. To reset the 
network, all unit states are set to 0. 



3.4 How item.s are presented to the network 

Among the several possible ways in which an input can 
be presented to a network, we chose to use time-based 
input. While this is to some extent an arbitrary choice 
for our initial explorations described here, time (e.g. du­
ration of sensory input) may correspond to magnitude 
in many natural situations. For instance, a bee can 
judge the size of a potential new hive site by the time 
it takes to fly from one side to the other, and a robot 
judging lengths of walls during navigations can use the 
time taken to pass along them. With such time-based 
input for the CTRNNs, the value of each item seen spec­
ifies the lapse of time in seconds (multiplied by 5 to give 
the number of network updates) during which the net­
work external input I; is set to 1 (see the network state 
equation in the previous section). 

Thus, each trial proceeds as follows. At the beginning 
of each trial the network is reset. Then, before each item 
is introduced, the network is cleared for 2 seconds by set­
ting the network external input I; to 0 (where 2 seconds 
corresponds to 10 updates of the network's state). After 
that, the network is presented with the current item by 
setting the network external input to 1 for s seconds, 
with s equal to the value of the item being presented. 
After presentation, the network's output is checked to 
see if the item is accepted or not. H the item is rejected, 
the network is again cleared for 2 seconds, and then the 
next item is introduced. 

3.5 How network fitne.s.s i.s .scored 

Each network is evaluated based on the items it has cho­
sen in the 60 trials. Choices are made either by the 
network expressing its preference for some item, or by 
the network not expressing any preference and therefore 
being assigned the last presented item of the current trial 
as its choice. For each single trial, the payoff corresponds 
to the normalized relative ranking of the selected item. 
For example, assume that the network selects the item 
that holds value 13 among the population of items that 
made up trial T1 in Table 1. The network's payoff for this 
trial corresponds to A = 9/20 because 9 is the relative 
ranking of the selected number, 13, in that trial. 

The total payoff P for each network is calculated by 
averaging the payoff obtained across the 60 trials: 

P = 60 LPc, C = 1, ...,60. 

3. 6 The genetic algorithm 

A real-valued steady-state genetic algorithm (Goldberg, 
1989] was used to evolve the CTRNN parameters. A 
population of 50 individuals was maintained, with each 
individual's 4-neuron network encoded as a vector of 25 
real numbers (16 connections, 4 decay constants, 4 bias 

1 2 3 4 

1.0 330.161170 1.071498 42.389673 
-1.032616 0.187748 0.482778 -1.282664 

Table 2: The table above gives the decay constants,; and the 

bias terms (J;, for each neuron of the best evolved network. 

The gain factor g is equal to 1. 

terms, 1 gain factor). Initially, a random population of 
vectors was generated by setting each component of ev­
ery individual to a random value uniformly distributed 
over the range (0, l]. Individuals were selected for repro­
duction using a linear rank-based method with implicit 
elitism. Each vector component in a newly-created in­
dividual was mutated with a probability of 0.2 using a 
"creep" mutation operator which added a random num­
ber chosen uniformly from the range (-0.2, +0.2]. Dur­
ing evolution, vector component values could not move 
outside the range (0, l]. Recombination when creating 
offspring was applied with a probability of 0.3. 

Genetically encoded values were linearly mapped into 
CTRNN parameters with the following ranges: biases 
f3i E (-2,2]; connection weights Wj; E (-5,5]; and gain 
factor g E (1, 7]. Decay constants were first linearly 
coded in the range T; E [0, 2.8] and then exponentially 
mapped into Ti E (10°, 102 • 8 ]. These parameter ranges 
were chosen on the basis of having proven useful in other 
CTRNN experiments. The large range of the exponen­
tially mapped decay constants is meant to allow for evo­
lution to select both neurons that tend to change their 
state (cell potential) radically every time step (i.e., neu­
rons with small decay constants), and neurons that tend 
to change their state only minimally every time step (i.e., 
those with large decay constants). 

4 Results 

Ten evolutionary simulations were run for 5000 genera­
tions each with 50 networks, and each network was as­
sessed on all 60 sequences. We tested the best network of 
the final generation from each of these runs to establish 
how well these networks perform in the Dowry Problem 
and in another series of slightly different test problems. 
These problems differ from the standard Dowry Problem 
in the way in which payoffs are determined for chosen 
items, as explained in the next section. The very best 
network from all 10 simulation runs is shown in figure 1 
with its connection weights W,;j, while table 2) shows its 
decay constants T;, bias terms f3,;, and gain factor g. This 
network's performance is compared with the average per­
formance of the best networks from the 10 runs and with 
the performance of a set of more standard cutoff rules in 
section 4.2. 



Figure 1: Morphology and connection weights of the best 

evolved network. The continuous lines indicate excitatory 

connections (positive weights), whereas dashed lines indicate 

inhibitory connections (negative weights). 

4.1 Evaluation method 

To evaluate the performance of the evolved networks, we 
developed an extended set of test problems because the 
Dowry Problem itself is probably not the most realis­
tic or· common form of sequential choice task that real 
agents could encounter. In the Dowry Problem, the s_in­
gle best option is the only good one - the only optmn 
that receives a non-zero payoff. But this very strict pay­
off function would be found in few natural situations. 

In many species, many (if not most) animals find some 
mate, some food source, and some place to live, and thus 
receive some payoff in these search domains, even if they 
are not getting the highest possible payoff. Thus in these 
cases, a payoff proportional to the quality of the alter­
native chosen (e.g., proportional to the size of the nup­
tial gift selected, and as used in our fitness function for 
evolving the CTRNNs) is more appropriate than the all­
or-nothing payoff of the standard Dowry Problem. In 
other species, the available alternatives (e.g., mates or 
habitats) may be limited so that not all individuals suc­
ceed in making a viable choice - for instance, only a 
quarter of the possible habitats in which one could set­
tle may provide enough resources to raise offspring. For 
such cases, the search payoff function might fully reward 
only choices made in the top 25% of all available alter­
nat.ives and give zero payoff to all other choices. Based 
on such considerations, we used the following set of test 
problems and associated payoff criteria [Todd and Miller, 
1999]: 

l. Dowry Problem - For each trial, the payoff is 1 for 
selecting the single best item, and 0 otherwise. 

2. Top 10% Problem - For each trial, the payoff is 1 
for selecting an item in the top 10% of the population 

of items for that trial, and 0 otherwise. 

3. Top 20%, 30%, 40%, 50% Problems - As above, 
with payoff 1 for selecting an item in the top n % of 
the population, and 0 otherwise. 

4. Bottom 20% Problem - For each trial, the payoff 
is 1 for selecting an item that is not in the bottom 
20% of the population of items, and 0 otherwise. 

5. Bottom 10% Problem - For each trial, the payoff 
is 1 for selecting an item that is not in the bottom 
10% of the population of items, and 0 otherwise. 

6. Maximize Mean Ranking Problem - For each trial, 
the payoff is proportional to the ranking of the value 
picked, calculated as explained in section 3.5. 

Note that the last payoff function is the same as the fit­
ness function that was used during network evolution; 
all of the other performance measures are testing the 
ability of the CTRNNs to generalize to new (though re­
lated) tasks. (Each network and strategy was evaluated 
on all performance measures simultaneously - that is, 
each choice made was evaluated for whether it was the 
single best, and in the top 10%, and bottom 20%, etc.) 

To provide a benchmark for evaluating the perfor­
mance of our best evolved networks, we also tested a 
range of cutoff rule strategies as introduced in section 2. 
These cutoff rules (as described in section 2) require 
checking a certain number r - 1 of items from the pop­
ulation with r E [l,n - 1] (where n is the number of 
items in the whole population), remembering the best 
of those, and then choosing the next item seen that is 
better than the best seen so far [Seale and Rapoport, 
1997]. Varying the parameter r across its whole range, 
we get n - 1 possible different cutoff rule strategies, or 
19 different cutoff rules for our population of 20 items. 
For example, the cutoff rule defined by setting r = 1 
samples 0 items (so that the best seen so far is also 0, or 
undefined), and hence always chooses the first presented 
item. This yields random performance in the Dowry 
Problem, which is a useful benchmark. The cutoff rule 
defined by setting r = 11 samples 10 items, remembers 
the best �f them, and then picks the next seen (starting 
with item 11) that is even better. If no subsequent item 
is seen that is better than the best encountered during 
the initial sample (that is, no further item exceeds the 
aspiration level set), then the network "picks" the last 
item presented as its choice. 

It is important to point out that these cutoff rules are 
not necessarily the optimal solution for each of our par­
ticular test pr�blems, but they are a simple strategy that 
agents can use (and that people seem to use-see Seale 
and Rapoport [1997]). Thus, by finding the best cut­
off rule for a particular test (i.e., by finding which value 
of r leads to the highest performance), we can estab­
lish a useful, and psychologically plausible, benchmark 



Figure 2: Performance on the different test problems for all 

cutoff rule strategies (white bars) compared with the sin­

gle best evolved network (continuous lines) and the average 

performance of the best evolved networks from the 10 runs 

( dashed lines). For all graphs, the x-a.xis indicates the r value 

for the cutoff rules, while the y-axis shows the average payoff, 

calculated according to the particular test problem definition. 

for comparison with the evolved networks. The opti­
mal solutions are actually difficult to find; for the task 
of minimizing the mean rank selected (here with rank 1 
being best) , it is known that the optimal solution will 
find a rank of 4 or better on average [Chow et al. ,  1964] , 
yielding another rough benchmark of 85% performance 
on the Maximize Mean Ranking Problem. 

4-2 Comparing performance 

Figure 2 shows the performance on the different test 
problems of the 19 cutoff rule strategies compared with 
that of the very best evolved network and the average 
performance of all the best evolved networks from the 
10 simulation runs. In the Dowry Problem, the perfor­
mance of the best evolved network does not match that 
of the best cutoff rule ( for r = 8) , achieving 27% success 
rate instead of the optimal 37%. 

owever, when perfection is not the goal (as it is 
for the Dowry Problem) ,  the performance of our best 
evolved network gets more impressive. In the Top 10% 
Problem the performance of the best evolved network 

comes very close to the performance of the best cutoff 
rule strategy. Even more surprisingly, for all the other 
test problems the best network overcomes the perfor­
mance of the best cutoff rule. ow can this be? 

5 Analyzing the best evolved network 

It should be recognized that CTRNNs, with multiple 
recurrent connections and no a priori division into mod­
ules, are inherently difficult to analyze. There may be no 
direct translation of the network behavior into a strat­
egy described in terms of simple rules . owever, we can 
look into how the networks process their input infor­
mation both behaviorally (e.g. , by testing their choices 
in different experimental settings) and "neurologically" 
(e.g., by monitoring changes in internal activation lev­
els over time) and see if this suggests any rules that can 
summarize their behavior. 

To try to understand how the best evolved network can 
perform so well on search criteria related to the Dowry 
Problem, we should first consider how the problem we 
created differs from the true Dowry Problem. First, we 
always present values from a uniform distribution; sec­
ond, we always present values in one sequence (trial) 
from within a 30-number span; third, the evolving net­
works only ever see numbers from 1-89. Given these 
restrictions , the evolutionary process can build a more 
specific solution to the search problem it faces. For in­
stance, one approach would be to use the first few (even 
just two or three) values seen in a trial to compute an 
estimated mean of the range for this trial, and then add 
12 (a bit less than half of the full range of 30) to this 
estimate to create the aspiration level for use in further 
search. We have not yet determined the strategy used 
by the best evolved network to this level of detail, but 
we have begun to take steps in that direction, as we now 
describe. 

The first aspect of the network's behavior that we 
looked at is the percent of choices that are made at 
each relative rank within each of the 60 trials (see Fig­
ure 3) , both for the best evolved network and for the 
best cutoff rule for the original Dowry Problem (r = 8). 
Choices here are both those that the network or strat­
egy actively makes, and those that it is passively as­
signed when it must take the final presented option by 
default. Figure 3-Network shows that the best evolved 
network chooses the best item (rank 20) with the high­
est frequency throughout all the trials , regardless of the 
actual value of the item itself. The network also per­
forms slightly better within the range of values that can 
be found in trials 10 to 40 . Figure 3-Strategy shows 
that the cutoff rule distributes its choices across the rel­
ative ranks in a similar, but more consistent, manner, 
and with more of an emphasis on the single best value. 

We focus in on explicitly expressed preferences (i .e . ,  
not including default final-value choices) in Figure 4, 



Figure 3: Percent of choices made per rank and per trial by 

the best evolved network (on the left) and by the cutoff rule 

with r = 8 (on the right) .  Ranking 1 refers to the item with 

the lowest (worst) value, while ranking 20 refers to the item 

with the highest (best) value. 
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Figure 4: Percent of expressed preferences (actively-made 

choices) per item value and per trial by the best evolved 

network (on the left) and by the cutoff rule with r = 8 (on 

the right). 

where we show the percentage of trials on which partic­
ular values ( rather than ranks) are selected by the best 
network and cutoff rule. This graph makes it clear that 
the network tends to choose particular item values only 
when they are among the highest within the current pop­
ulation, thus overcoming the sensory aliasing problem. 
For example we can see from figure 4 - Network that val­
ues around 30 were selected more frequently when they 
appeared in the first 10 trials than when they appeared 
in trials 20 and above. 

Finally, figure 5 helps us to speculate on the possible 
approach that the network might have evolved. To un­
derstand the behavior of the network we refer to four 
different features of its decision making recorded during 
the evaluation test. Figure 5a shows the percent of ex­
pressed preference per trial . Figure 5b shows the average 
position at which a preference is expressed per trial. Fig­
ure 5c shows the average number of seconds of presenta-

Figure 5: a. Percent of trials in which the best network 

actively expressed a preference, versus trial number. b. Av­

erage position at which an actively expressed choice is made 

per trial. c. Average number of seconds of input=l from 

the beginning of the presentation of the selected item to the 

time when the activation level of the network's output neuron 

goes to 1 .  d. Average number of second..q of input=l from the 

beginning of each whole trial to the time when the network 

output neuron's activation level goes to 1 .  

tion of the ultimately-selected item in a given trial (that 
is, the amount of time that the input neuron receives 
input=l) until the activation level of the network's out­
put neuron goes to l. This is essentially the aspiration 
level or threshold that the network has set, based on the 
items it has seen so far in this trial, at the time that it 
makes its active choice. Graph d shows the average total 
number of seconds of input=l from the beginning of each 
whole trial to the time when the activation level of the 
network's output neuron goes to 1 (making its choice) in 
each single trial . This is essentially how much "history" 
(in the sense of total summed input values) is required 
within a trial before the network makes an active choice. 

Bearing in mind that the average value of the trial­
population of items increases from trial 1 to trial 60, we 
can then describe and summarize the results shown in 
figure 5 in a few concepts: First, the network is not al­
ways expressing its preference with the same frequency 
(see Figure 5a) . Looking at figure 5a, we can see that, 
from trial 1 to trial 15, the conditions triggering the net­
work choice occur more often with later trials. After trial 
15 these conditions seem always to be satisfied by the dis­
tribution of item values, until about trial 50, when the 
network starts getting more silent and expresses fewer 
explicit preferences. For the moment, we leave out any 
explanation of this phenomenon, but it will be treated 
more extensively in the next section. 

Secondly, the response of the network is triggered by 
somewhat different conditions in each trial (see Fig­
ure 5b,c,d) . These conditions are defined by the item 



values seen before a choice is made. Recall that the 
network experiences the item values in terms of 10 up­
dates before each item with the external input set to 
0, followed by a number of updates ( 5 times the item 
value) with the external input set to 1. Figure 5c then 
shows that the aspiration level of the network (in terms 
of amount of time or number of updates over which the 
selected item is presented before it is selected) goes up 
as the trials , and hence population values seen, go up. 
This is to be expected, in order for the network to per­
form well; but the increase in the aspiration level is not 
strictly proportional to the increase in the values in the 
population, with the first trial (values between 1 and 29) 
leading to an average aspiration level of about 25, while 
the last trial (with values between 60 and 89) leads to 
an aspiration level of about 80 (rather than 85) . This 
can also explain why choices are made later in each trial 
for the early trials , and sooner in each trial for the later 
trials (Figure 5b) . Finally, Figure 5d shows that , if we 
consider the sum of values seen before an active choice 
is made, this sum goes up with later trials ; however, this 
is counteracted by the fact that fewer items are needed 
to create these higher sums in later trials (so again as 
shown in Figure 5b, with later trials fewer individual 
items must be seen before a choice is made) .  

Figure 6 :  Robustness of  the best evolved network. a .  Percent 

of expressed preference per trial. b. Average position at 

which a preference is eXPressed in each trial. 

5. 1 Robu.stne.ss of the be.st evolved network 

We have carried out further tests to explore the behav­
ioral robustness of the best evolved network. We ran the 
network 5000 times in an "unknown" Dowry Problem 
scenario, where the item values were taken from a dis­
tribution that had not been seen by the network nor by 
any of its ancestors. Values were drawn from a uniform 
distribution on the interval Tc E [le , he] , with the low­
est number le and the highest number he of the range 
defined as follows : 

The message from the graphs in figure 6 is quite 
clear. The network starts expressing its preference with 

a rather low frequency (figure 6a) , always selecting the 
first presented item (figure 6b) . The frequency of ex­
pressed preference continues to decrease until trial 20 
when it reaches O (figure 6a) . At this point, the network 
stops making active choices (and then gets the last value 
as a default choice, yielding random performance on the 
task) . 

This message is clear, but it is also counterintuitive. 
\Ve expected a different outcome, because we thought 
that any value that can trigger the network's response 
in trial 1 in this problem will appear more frequently on 
the following trials as the values get higher, so the rate of 
active choice should go up. Also, we thought that higher 
values should produce more active choice. Why was this 
not the case? 

Part of the explanation may lie in the way that we in­
terpret the output of the network. Bearing in mind that 
the network's output neuron - with which the network 
expresses its active choices - is checked only at the end 
of any item presentation, the behavior of the network 
may contradict our intuition because the output neu­
ron's activation value need not rise to 1 and stay there 
during an item's presentation. That is, after the output 
neuron activation has been set to 1 by the conditions 
that trigger an active network choice, it may return to 0 
if the network continues to be updated longer with the 
external input set to 1. Then, when the output level is 
checked at the end of the item's presentation, it may be 
back to 0, indicating that this item should not be chosen, 
even though it was at 1 earlier (which could have indi­
cated active choice) . Of course, we can get around this 
by having the unit act as a toggle, so that once output 
is 1, the choice is made immediately; this interpretation 
of the output unit must be tried during evolution to see 
what effect it has on the ability of these networks to 
generalize to other value ranges. 

This same phenomenon may be responsible for the de­
crease in frequency of expressed preference shown by the 
best evolved network during the last 10 trials of the eval­
uation test (see figure 5a) . In these trials, the item values 
are certainly the largest ever experienced by the network 
(and its ancestors) . For particular orders of presentation, 
these items might cause the network to output O (do not 
choose) at the end of a particular item's presentation, 
even though the network might have output 1 (choose 
this item) during the presentation. 

6 Conclusions 

We have shown here that simple (or at least small) dy­
namic neural networks, shaped by evolution, can success­
fully solve the important adaptive problem of sequen­
tial choice, as embodied in variants of the Dowry Prob­
lem. This work demonstrates that CTRNNs are capable 
of exhibiting another form of minimal cognitive behav­
ior [Beer, 1996; Slocum et al. ,  2000] - a behavior that 
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agents in the real world face whenever they must find 
resources distributed in time or space. The surprising 
finding here is that the evolved networks can even out­
perform simple cutoff rules that usually do very well on 
such search problems; this performance advantage is pro­
nounced when more biologically realistic forms of pay­
off (such as rank-proportional payoff) are employed. In 
addition, our results showed that the evolved CTRNNs 
can overcome a form of the sensory aliasing problem: the 
networks employ a "behavioral strategy" that is plastic 
enough to respond differently to the same value seen in 
different contexts determined by the current item popu­
lation. 

The reasons for this surprising performance must still 
be uncovered; so far, we have just begun to analyze how 
the networks achieve this feat. While our analyses to 
date have helped us to begin to see how the best evolved 
network is operating, several further tests are needed. 
In particular, we want to see how the network's aspira­
tion level changes as a result of particular sets of input 
values it sees. For instance, does seeing the values { 12, 
18} result in the same aspiration level as {18, 12} or 
{12, 15 , 18}? (It does not in human experiments.) ow 
do the activation levels of the individual neurons change 
over time with presentation of a given value? Does the 
network seem to keep track of minimum or maximum 
values seen, or the average of all values , or the range 
of all values , or some combination of these? (We can 
try to determine this by a combination of manipulating 
the network's input and looking at what the neurons are 
doing.) By gathering these additional observations, we 
can home in on the kinds of strategies that this best net­
work and other evolved networks are using. As a further 
step , we can then compare the mechanisms used by the 
networks with those used by people in similar experimen­
tal settings, as a way to try to understand more about 
how real biological agents deal with sequential search 
and choice problems. 

Future work will explore the applicability of sequen­
tial choice CTRNNs for search problems influenced by 
other factors such as changing environments (e .g. ,  where 
the population of values goes up or down in overall qual­
ity over time as the search is progressing) or multiple 
cues (e.g. , where the agent learns about different fea­
tures of each item rather than about each item's criterion 
value directly) .  These settings will allow our approach 
to be generalized to more biologically realistic settings 
including mate choice and habitat choice, enabling us 
to further extend the range of cognitive behaviors that 
CTRNNs can model beyond the merely minimal. 
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