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From Prideand Prejudiceto Persuasion

Satisficingin MateSearch

Peter M. Todd

Geoffrey F. Miller

Wedding is destiny,
And hanging likewise.

John Heywood. Proverbes

I married the fust man I ever kissed. When I tell this to my
children they just about throw up.

Barbara Bush, First Lady

In 1611, the first wife of astronomer Johannes Kepler (1571-1630) died
of cholera in Prague. Liberated from an arranged and unhappy marriage,
Kepler immediately began a methodical search for a replacement. Though
short, unhealthy, and the son of a poor mercenary, Kepler had an MA in
theology from Ttlbingen, succeeded Tycho Brahe as imperial mathemati-
cian of the Holy Roman empire, and had recently become famous for ex-
plaining how eyeglasses can correct myopia (Ad Vitellionem Paralipo-
mena, 1604), documenting a supernova (De Stella Nova, 1606), and
demonstrating that the orbit of Mars is an ellipse (Astronomia Nova,
1609). He was a good catch. Relentlessly courting, Kepler investigated 11
possible replacements in the two years after his wife's death. In a letter to
Baron Strahlendorf written shortly after marrying candidate number five
in 1613, Kepler described this methodical mate search. Friends urged
Kepler to choose candidate number four, a woman of high status and
tempting dowry, but she rejected him for having toyed with her too long,
so Kepler was free to settle with his most-preferred number five. Kepler
chose well: His new wife, though not of the highest rank or dowry, was
well-educated, bore him seven children, and provided the domestic infra-
structure for Kepler to publish four more major works laying the empirical
foundations for Newton's law of gravity, and, incidentally, to save his
mother from being burned at the stake as a witch in 1620 (see Ferguson,
1989; Koestler, 1960).
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Kepler's experience illustrates some of the major themes in the litera-
ture on search strategies that has emerged over the past several decades

in statistics, economics, and biology. So far in this book we have focused

on decision problems where all of the alternatives are simultaneously pre-

sented, and one only needs to search through information to guide one's

choice. In many real-world choice problems, though, an agent encounters

options in a temporal sequence, appearing in random order, drawn from

a population with parameters that are only partially known ahead of time.

In this case, the search for possible options, rather than just for informa-

tion about present alternatives, becomes central. For mate choice in par-

ticular, the structure of the search task requires that one choose a prospect

that fits one's real criteria for success rather than irrelevant ideals sug-

gested by well-meaning acquaintances, given limited time for investigat-

ing each possibility, and some risk that the prospect, being an agent in his
or her own right, will reject one's offer of union. The three disciplines that

have investigated search tasks most thoroughly have emphasized different

subsets of thelie issues.
Statisticians have focused on the "secretary problem" (Ferguson, 1989;

Gilbert &Mosteller, 1966), in which one must pick the very best secretary

from a sequence of applicants that appear in random order drawn from

an unknown distribution of quality. Once rejected, applicants cannot be

recalled. The secretary problem seeks perlection, with a payoff of one for

picking the very best applicant and zero for picking anyone else. It also
ignores search costs such as time; ignores the problem of mutual choice

(the possibility that the applicant you like will not like you), and assumes

you know the exact number of applicants who will arrive. But it directly
addresses what to do about the uncertainty that the next prospect one

encounters might be far superior to the best seen so far. It can be shown

that the solution to the secretary problem demands sampling a certain

proportion of the applicants, remembering the best of them, and then

picking the next applicant who is even better. The optimal number to

sample is lIe (37%). Following this "37% rule" finds the very best appli-

cant about 37% of the time (see Ferguson, 1989).
Economists have developed models of job search for best salaries and

consumer search for lowest prices, emphasizing the importance of search

costs and the acceptability of less-than-perfect options (Lippman & Mc-
Call, 1976). These search models, like those of the statisticians, usually

ignore mutual choice, but they do not assume the total number of pros-

pects is known, nor do they assume that only the best will do. On the

other hand, these models generally assume that you can backtrack to pick

previously seen options. With assumptions differing markedly from those

of the secretary problem, the solution is also quite different. The general

solution to this type of search task is to set a "reservation price" at which

the marginal cost of further search equals the marginal expected improve-

ment over the best prospect seen so far. That is, one should keep looking

for a better salary or a lower price until the effort of looking further is

likely to be more costly than the amount of improvement you could

achieve, and then return to the best seen. This in turn can depend criti-

cally on the standard deviation of the distribution of salaries or prices,

which may need to be estimated from previously observed options (Mar-

tin & Moon, 1992). This type of solution, requiring involved computations

to determine when to stop search, falls into the class of constrained opti-
mization methods discussed in chapter 1.

Biologists spent considerable effort in the 1980s amassing support for

Darwin's (1871) claim that animals engage in mate search with enough
discrimination and persistence to impose sexual selection pressures on

one another (see Andersson, 1994). Several researchers developed de-
tailed models for search behavior (e.g., Johnstone, 1997; Wiegmann et al.,
1996), often with less theorem-proving zeal than the statisticians or econo-

mists, but more attention to the empirical testability of their models.
These models usually incorporate search costs, and sometimes lack of

knowledge about the distribution of potential mates (Mazalov et aI., 1996).

Much recent effort has gone into distinguishing whether different species

use a best-of-N rule or a threshold criterion rule in mate search (e.g.,
Fiske & Kalas, 1995; Forsgren, 1997; Valone et al., 1996). The best-of-N

rule means sampling a certain number N of prospects and then choosing
the best of those seen, whereas a threshold criterion rule, like the 37%

rule and the reservation price rule, means setting an aspiration level and
picking the first prospect that exceeds it. Simon (1990) has termed the

latter aspiration-setting mechanism "satisficing," defined as "using expe-
rience to construct an expectation of how good a solution we might rea-
sonably achieve, and halting search as soon as a solution is reached that

meets the expectation" (p. 9). As indicated in chapter 1, Simon sees satis-

ficing as one of the main forms of bounded rationality available in situa-

tions where the complete set of possible alternatives to choose from is
not, or cannot be, known.

All of the above approaches tend to consider a single searcher assessing

passive goods waiting to be chosen. But one of the major problems in mate

search is coping with mutual choice. It is fairly easy to develop satisficing

rules that work well for nonmutual search, for instance, shopping around
for tomatoes or televisions that will not object to being bought. There has

been much less research on finding satisficing rules for mutual search

under uncertainty. One more literature is relevant in this regard: the tradi-

tion of economic game theory research on "two-sided matching" (Roth &
Sotomayor, 1990), which is largely the study of mutual choice, but with

certainty and complete knowledge.
As with most game-theoretic analysis, this tradition has focused on

finding equilibria, or sets of strategies that are mutually optimal against
one another. It can be shown that if a finite set of men and women have

consistent, transitive preferences for one another, then there exists at least

one "stable matching" in which no one who has a mate would prefer
somebody else who would also prefer him or her in return. The two-sided
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likely to be more costly than the amount of improvement you coul d 
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mization methods discussed in chapter 1. 
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latter aspiration-setting mechanism "satisficing," defined as "using expe­
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sonably achieve, and halting search as soon as a solution is reached that 
meets the expectation" (p. 9). As indicated in chapter 1, Simon sees satis­
ficing as one of the main forms of bounded rationality available in situa­
tions where the complete set of possible alternatives to choose from is 
not, or cannot be, known. 
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tion of economic game theory research on "two-sided matching" (Roth & 
Sotomayor, 1990), which is largely the study of mutual choice, but with 
certainty and complete knowledge. 

As with most game-theoretic analysis, this tradition has focused on 
finding equilibria, or sets of strategies that are mutually optimal against 
one another. It can be shown that if a finite set of men and women have 
consistent, transitive preferences for one another, then there exists at least 
one "stable matching" in which no one who has a mate would prefer 
somebody else who would also prefer him or her in return. The two-sided 
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matching literature also shows, however, that there are often multiple

equilibria, or different possible stable matchings given a particular set of

men and women with particular preferences. Although each is stable in

the sense that there is no rational incentive for divorce and remarriage,

different equilibria fulfill people's preferences to different degrees: Some

are "male-optimal" (making men as happy as they could be given the ac-

tual preferences of women), some are "female-optimal" (making women

as happy as they could be given men's preferences), and some are neither.

There is a simple search method called the "deferred acceptance proce-

dure" that is guaranteed to produce a stable matching efficiently given

mutual choice and perfect and complete information about everyone in

the population (Gale & Shapley, 1962). But whether such equilibria exist

(or ever occur) for real populations, and whether any algorithms exist for

finding them in realistic situations of imperfect, incomplete information,

remains to be shown.

How do all these statistical, economic, and biological models illumi-

nate Kepler's cQurtship plan, or more generally, human choice behavior

when presented with a sequence of options? Mate search can be consid-

ered a rather difficult but extremely important type of decision making

under uncertainty. The models mentioned above have identified some of

the difficulties: uncertainty about the distribution of mate values one will

encounter, ignorance of the order in which prospects will be met, diffi-

culty of backtracking to previously rejected prospects, search costs, time

limits and temporal discounting, and, above all, the mutual choice prob-

lem that mating must be mutually acceptable to both parties.

Different fields address or ignore these difficulties in different ways.

Statisticians and economists tend to treat mate search as an interesting

pretext for developing optimality theorems relevant to job search and con-

sumer search, rather than treating mate search as a central adaptive prob-

lem in human life. Biologists view things differently, because mate search

and mate choice drive sexual selection, an evolutionary process perhaps

equal to natural selection in its power and creativity. With the resurgence

of interest in sexual selection theory since the late 1970s (see Andersson,

1994; Bateson, 1983a; Cronin, 1991), and evolutionary psychology since

the late 1980s (see Barkow et al., 1992; Buss, 1994; Miller &Todd, 1998),

research has begun to focus on the role that sexual selection via mate

choice has played in shaping many aspects of the human mind (Miller,

1998; Ridley, 1993; Wright, 1994). In studying mate search then, we are

studying an interesting, difficult problem of decision making under uncer-

tainty that, perhaps uniquely among such problems, is likely to have had

a strong causal influence on human evolution.

As with so many problems of human decision making, the rationality

and efficiency of human mate choice, including the process of search, has

been questioned. Frey and Eichenberger (1996) argued that people do not

search long enough when seeking a mate, taking the incidence of divorce

and marital misery as indicators of insufficient search. Rapoport and Tver-

T
FROMPRIDEAND PREJUDICETOPERSUASION:SATISFICINGIN MATESEARCH291

sky (1970) questioned whether people adhere to the reservation price rule

for searching given a known distribution of values and a known search

cost. However, the sequential search literature is not dominated by these

sorts of worries about the ways that people deviate from known optimal

strategies, in part because the optimal strategies are not known for many

realistic search situations, and in part because psychologists have paid

much less attention to search tasks than to other decision-making tasks.

Psychologists and economists who have studied search have often fo-

cused on the simple heuristics that people actually appear to use. Hey

(1982, 1987) has identified a number of these rules, such as the "one-

bounce rule," by which people seeking high values keep checking values

as long as they increase, but stop as soon as they decrease and select the

previous value. Martin and Moon (1992) used computer simulation to as-

sess the relative performance of different simple strategies in a consumer

search setting and found that some rules can come within 3% of the nor-
mative standard.

In this chapter, we follow in the footsteps of these researchers and look

for simple satisficing search heuristics that perform adaptively in the spe-

cific domain of biologically realistic mate search problems. We also evalu-

ate different heuristics in simulation across a variety of search conditions

using a variety of performance measures. Following a similar historical

trend in sexual selection theory in biology (see Cronin, 1991), we begin

with the rather male-centered case of one-sided search, and then proceed

to the more realistic case of mutual search, emphasizing female choice as

well as male. (To keep our analyses simple, in this chapter we do not go

into the effects of possible sex differences in mate search strategies,

though these could certainly have interesting and important conse-
quences.)

Through our analyses we find that, even for simple cost-free, nonmu-

tual search as in the secretary problem, the 37% rule is outperformed on

many criteria by heuristics that sample significantly fewer prospects.

These heuristics do not even need to know the expected number of pros-

pects one will encounter: A simple satisficing heuristic called "Try a

Dozen" works well across a large range of numbers of prospects. We also

find that when mutual choice enters the picture, these types of search

strategies tend to perform very poorly. Only individuals who are very

highly valued themselves can get away with applying the 37% rule or the

Try a Dozen heuristic in mutual choice situations. (Kepler was lucky in

this respect: His high mate value helped ensure that his "Try Eleven"
strategy would yield good results.)

Instead, search heuristics that take into account one's own mate value

perform much better in mutual choice, producing faster, more frequent.

higher-quality matings for individuals. Even if one's own mate value is

not known initially, good search efficiency can be attained using a simple

adaptive heuristic that adjusts one's aspiration level based on the number

of offers and rejections received from others during an initial sampling
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period. If one also pays attention to the mate values of those who do or

do not show interest, it becomes easier to learn one's mate value, which

can be used as a basis for effective search strategies that deliver close to

the best mate that could be hoped for given mutual choice. In brief, search

strategies such as the 37% rule and the Try a Dozen heuristic that work

well without mutual choice perform extremely poorly given mutual

choice, falling far behind mutual choice strategies that allow one to learn

one's own mate value from others' reactions. In keeping with the idea of

ecological rationality, we find that the satisficing heuristics for mate

search that do best in a given environmental situation-whether one-

sided or mutual search-are those that exploit the structure of the infor-

mation in their environments, relying solely on mate values in the former

case, and on expressions of interest or disinterest in the latter.

Algorithmsfor One-SidedMateSearch:The Dowry Problem

The idealized versions of search described in the previous section differ

considerably from the situation that presents itself to men and women

searching for a mate, at least in many modem Western cultures. This type

of mate choice usually consists of a seqqential search through successive

potential mates in which each one is evaluated and decided on in turn in

a process that can take minutes, hours, days, or years. (Here the decision

can be thought of as whether to settle down and have children with a

particular person, though other definitions are possible.) There are cer-

tainly costs associated with checking out each person during this search.

But perhaps the most significant cost is that it is difficult, and often im-

possible, to return to a potential mate that has been previously discarded

(because they remain in the "mating pool" and are likely to pair up with

someone else in the meantime, as countless romantic tragedies attest). To

further complicate matters, one does not know ahead of time what the

range of potential mates may be: How can we know the first time we fall

in love whether someone else might be able to incite still deeper feelings

if we just keep searching long enough to find them? We cannot even tell

how many more potential mates we may encounter. Given these restric-

tions on the search process and lack of knowledge about the space we are

searching, finding a mate looks like a very daunting problem indeed.

We can consider this situation in more precise detail, and in a form

more closely linked to mate choice, via an alter ego of the secretary prob-

lem mentioned in the previous section: the "dowry problem." This is a

well-known puzzle from statistics and probability theory (Corbin, 1980;

see also Gilbert & Mosteller, 1966; Mosteller, 1987), as the number of

names it goes by attests (it is also known as the "beauty contest problem"

and even "Googol"). In its dowry form, the story goes like this: A sultan

wishes to test the wisdom of his chief advisor, to decide if the advisor

should retain his cabinet position. The chief advisor is seeking a wife, so
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the sultan takes this opportunity to judge his wisdom. The sultan arranges

to have 100 women from the kingdom brought before the advisor in suc-

cession, and all the advisor has to do to retain his post is to choose the

woman with the highest dowry (marriage gift from her family). If he

chooses correctly, he gets to marry that woman and keep his post; if not,

the chief executioner chops off his head, and worse, he remains single.

The advisor can see one woman at a time and ask her dowry; then he

must decide immediately if she is the one with the highest dowry out of

all 100 women, or else let her pass by and go on to the next woman. He

cannot return to any woman he has seen before-once he lets them pass,

they are gone forever. Moreover, the advisor has no idea of the range of

dowries before he starts seeing the women. What strategy can he possibly

use to have the highest chance of picking the woman with the highest
dowry?

As mentioned earlier, it turns out that the algorithm the advisor should

use to guarantee the highest chance of choosing correctly is the 37% rule,

which in this case would work as follows: He should look at the first 37

women (or, more generally, 37% of any population of candidates he

faces), letting each one pass, but remembering the highest dowry from that

set--call this value D. Then, starting with the 38th woman, he should

select the first woman with a dowry greater than D. (For derivations of

this procedure, see Ferguson, 1989; Gilbert & Mosteller, 1966; Mosteller,

1987.) This 37% rule is the best the advisor can do-it finds the highest

value more often than any other algorithm (again, 37% of the time), and

thus is, in this sense, the optimal solution to this problem. With this rule,

the advisor has slightly better than a one in three shot at picking the right

woman and keeping his head. The other two-thirds of the time, the sultan
has to look for another advisor.

The dowry problem is certainly an unrealistic reflection of human mate

choice in many respects-it only involves one-sided (rather than mutual)

search, it reduces search to a single dimension instead of appreciating the

many facets by which we judge one another (Miller & Todd, 1998), it de-

nies any possibility of comparing candidates simultaneously or returning

to those previously seen, and so forth. But it gives us a reasonable starting

point for testing some specific mate search mechanisms in a setting with

at least some domain-specific structure. And we can modify some of its

assumptions in useful ways to help us get a better understanding of more
appropriate search mechanisms, as we will now show.

One of the major differences between the dowry problem and the real

world is that in the latter, of course, our mating decisions are seldom so

dramatic-we usually get to (or have to) live with whatever choice we

make, even if it is not the "best" one. To the sultan's advisor, the perfor-

mance of the 37% rule on those occasions when it did not pick the highest

dowry did not matter-he was killed in any case. But to a population of

individuals all using such an algorithm to choose their mates, what this

rule does the other 63% of the time would matter a lot. For instance, if
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period. If one also pays attention to the mate values of those who do or

do not show interest, it becomes easier to learn one's mate value, which

can be used as a basis for effective search strategies that deliver close to

the best mate that could be hoped for given mutual choice. In brief, search

strategies such as the 37% rule and the Try a Dozen heuristic that work

well without mutual choice perform extremely poorly given mutual

choice, falling far behind mutual choice strategies that allow one to learn

one's own mate value from others' reactions. In keeping with the idea of

ecological rationality, we find that the satisficing heuristics for mate

search that do best in a given environmental situation-whether one-

sided or mutual search-are those that exploit the structure of the infor-

mation in their environments, relying solely on mate values in the former

case, and on expressions of interest or disinterest in the latter.

Algorithmsfor One-SidedMateSearch:The Dowry Problem

The idealized versions of search described in the previous section differ

considerably from the situation that presents itself to men and women

searching for a mate, at least in many modem Western cultures. This type

of mate choice usually consists of a seqqential search through successive

potential mates in which each one is evaluated and decided on in turn in

a process that can take minutes, hours, days, or years. (Here the decision

can be thought of as whether to settle down and have children with a

particular person, though other definitions are possible.) There are cer-

tainly costs associated with checking out each person during this search.

But perhaps the most significant cost is that it is difficult, and often im-

possible, to return to a potential mate that has been previously discarded

(because they remain in the "mating pool" and are likely to pair up with

someone else in the meantime, as countless romantic tragedies attest). To

further complicate matters, one does not know ahead of time what the

range of potential mates may be: How can we know the first time we fall

in love whether someone else might be able to incite still deeper feelings

if we just keep searching long enough to find them? We cannot even tell

how many more potential mates we may encounter. Given these restric-

tions on the search process and lack of knowledge about the space we are

searching, finding a mate looks like a very daunting problem indeed.

We can consider this situation in more precise detail, and in a form

more closely linked to mate choice, via an alter ego of the secretary prob-

lem mentioned in the previous section: the "dowry problem." This is a

well-known puzzle from statistics and probability theory (Corbin, 1980;

see also Gilbert & Mosteller, 1966; Mosteller, 1987), as the number of

names it goes by attests (it is also known as the "beauty contest problem"

and even "Googol"). In its dowry form, the story goes like this: A sultan

wishes to test the wisdom of his chief advisor, to decide if the advisor

should retain his cabinet position. The chief advisor is seeking a wife, so
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woman and keeping his head. The other two-thirds of the time, the sultan
has to look for another advisor.
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many facets by which we judge one another (Miller & Todd, 1998), it de-
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to those previously seen, and so forth. But it gives us a reasonable starting

point for testing some specific mate search mechanisms in a setting with

at least some domain-specific structure. And we can modify some of its
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One of the major differences between the dowry problem and the real

world is that in the latter, of course, our mating decisions are seldom so

dramatic-we usually get to (or have to) live with whatever choice we

make, even if it is not the "best" one. To the sultan's advisor, the perfor-

mance of the 37% rule on those occasions when it did not pick the highest

dowry did not matter-he was killed in any case. But to a population of

individuals all using such an algorithm to choose their mates, what this
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they are gone forever. Moreover, the advisor has no idea of the range of 

dowries before he starts seeing the women. What strategy can he possibly 
use to have the highest chance of picking the woman with the highest 
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women (or, more generally, 37% of any population of candidates he 
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set---call this value D. Then, starting with the 38th woman, he should 
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1987.) This 37% rule is the best the advisor can do-it finds the highest 
value more often than any other algorithm (again, 37% of the time), and 
thus is, in this sense, the optimal solution to this problem. With this rule, 

the advisor has slightly better than a one in three shot at picking the right 
woman and keeping his head. The other two-thirds of the time, the sultan 
has to look for another advisor. 
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choice in many respects-it only involves one-sided (rather than mutual) 
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many facets by which we judge one another (Miller & Todd, 1998), it de­
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to those previously seen, and so forth. But it gives us a reasonable starting 
point for testing some specific mate search mechanisms in a setting with 
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assumptions in useful ways to help us get a better understanding of more 
appropriate search mechanisms, as we will now show. 

One of the major differences between the dowry problem and the real 

world is that in the latter, of course, our mating decisions are seldom so 
dramatic-we usually get to (or have to) live with whatever choice we 
make, even if it is not the "best" one. To the sultan's advisor, the perfor­
mance of the 37% rule on those occasions when it did not pick the highest 
dowry did not matter-he was killed in any case. But to a population of 
individuals all using such an algorithm to choose their mates, what this 
rule does the other 63% of the time would matter a lot. For instance, if 
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applied to a set of 100 dowries covering all integer values from 1 to 100,
the 37% rule returns an average value of about 81 (i.e., the mean of all
dowries chosen by this rule). Only 67% of the individuals selected by this
rule lie in the top 10% of the population, while 9% fall in the bottom
25%. And it takes the 37% rule an average of 74 tests of potential mates
(Le., double the 37 that must be checked before selection can begin) before
a mate is chosen. (These figures are all discussed in the next section.) If
any of these performance figures could be improved upon by some other
sequential choice algorithm, that algorithm could well prove more adap-
tive for a population of mate choosers, allowing them to pick better mates
more often, or more quickly, or with a smaller chance of picking a total
loser, and we might therefore reasonably expect it to evolve in preference
to the 37% rule.

If the dowry problem itself is unrealistic, the 37% rule solution also
has many characteristics that could make it an implausible model of how
people actually choose mates. Here we will focus on two difficulties.
First, it requires knowing how many potential mates, N, will be available,
in order to calculate how many are in the first 37% to check and set one's
aspiration level, D. Second, this rule requires checking through a large
number of individuals before a decision can be made-74 out of 100 in
the previous example. Even assuming a r!lt4er quick assessment of some-
one's mate potential, perhaps a few dates over a month's time, the search
time involved becomes extensive.

Thus, using the 37% rule for human mate search may require informa-
tion that is difficult to obtain (an accurate value for Nj, and a large number
of individuals to be checked and consequently a long search time. On the
other hand, Frey and Eichenberger (1996) argue that one of the paradoxes
of marriage is that people search too little for their marriage partners,
checking too few individuals before making a lifelong commitment to one
of them. The evidence they cite argues against the use of the 37% rule in
human mate search-but it also argues that, by not searching long enough,
people are making worse mate choices than they might. If people are not
using an algorithm as long-winded as the 37% rule, what might they be
doing instead? Is it possible that there are any faster search rules whose
performance can assuage. Frey and Eichenberger's fears of poor mate
choice behavior? If so, will these rules prove more complicated? In the
next section, we explore the answers to these questions, and discover that
we can in fact do more, in mate choice, with less.

TheConsequencesof SearchingLess

To investigate whether any simple search heuristics exist that can outper-
form the 37% rule on various criteria in the standard secretary/dowry
problem domain, we began by studying a class of satisficing rules derived
from the original 37% rule. It turned out that even this small set of similar
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heuristics contained some that are better than the 37% rule on many di-
mensions, and so we restrict our discussion here to this class (though
other types of simple search algorithms or rules will probably prove to
have even better performance on some criteria). We have dubbed the class
of search heuristics we consider here "Take the Next Best" (or TNB,
named after the fast and frugal Take The Best decision heuristic described
in chapter 4).

Take the Next Best rules work in direct analogy to the 37% rule as
follows: For some specified G, the first G% of the N total potential mates
are checked (without being selected), and the highest dowry D is remem-
bered-this is the searcher's aspiration level. After the first C% of poten-
tial mates have gone by, the next potential mate with a dowry greater than
D is chosen. (If no greater dowry turns up, then we assume that the
searcher accepts the very last individual in the sequence, which is why
our performance curves in the upcoming figures fall to a final nonzero
value.) This simple heuristic (of which the 37% rule is one specific exam-
ple) has minimal cognitive requirements: It only uses memory for one
value at a time (the current highest dowry), only needs to know Nand G
and calculate Nx G/I00, and only needs to be able to compare two dowry
values at a time. We were interested in how the performance of these
simple algorithms would change as we altered the percentage of potential
mates they checked, G. Because we also wanted to be able to change the
underlying assumptions of this problem, such as the distribution of dowry
values, the cost of checking each potential mate, and whether or not N is
even known, the mathematics quickly grew complicated, and we decided
instead on a flexible simulation approach for answering these questions.

We tested the behavior of TNB search algorithms with values of G from
0% (corresponding to always choosing the first potential mate) to 15% in
increments of 1%, from 20% to 50% in increments of 5% (except around
the interesting 37% value, where we again increased the resolution), and
from 60% to 90% in increments of 10% (because we believed most of the
action-that is, good performance-would occur in the lower C ranges).
We ran each rule with different numbers N of potential mates, each with
10,000 different randomly created dowry (or mate value) lists. We col-
lected statistics on the distribution of mate values selected by each algo-
rithm (including the mean, standard deviation, quartile distributions, and
number of times the single best dowry value was chosen) and positions at
which mates were selected (the mean and standard deviation). With these
values in hand, we can answer the questions posed at the end of the previ-
ous section: Simply put, can the 37% rule be beaten?

SearchPerformanceWith100PotentialMates

The answer, even from the class of simple TNB rules, is a resounding
"yes." Of course, the 37% rule picks the highest mate value most often.
In figure 13-1, the "best" line shows how often the highest mate value was
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heuristics contained some that are better than the 37% rule on many di-
mensions, and so we restrict our discussion here to this class (though
other types of simple search algorithms or rules will probably prove to
have even better performance on some criteria). We have dubbed the class
of search heuristics we consider here "Take the Next Best" (or TNB,
named after the fast and frugal Take The Best decision heuristic described
in chapter 4).

Take the Next Best rules work in direct analogy to the 37% rule as
follows: For some specified G, the first G% of the N total potential mates
are checked (without being selected), and the highest dowry D is remem-
bered-this is the searcher's aspiration level. After the first C% of poten-
tial mates have gone by, the next potential mate with a dowry greater than
D is chosen. (If no greater dowry turns up, then we assume that the
searcher accepts the very last individual in the sequence, which is why
our performance curves in the upcoming figures fall to a final nonzero
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underlying assumptions of this problem, such as the distribution of dowry
values, the cost of checking each potential mate, and whether or not N is
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We tested the behavior of TNB search algorithms with values of G from
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from 60% to 90% in increments of 10% (because we believed most of the
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We ran each rule with different numbers N of potential mates, each with
10,000 different randomly created dowry (or mate value) lists. We col-
lected statistics on the distribution of mate values selected by each algo-
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number of times the single best dowry value was chosen) and positions at
which mates were selected (the mean and standard deviation). With these
values in hand, we can answer the questions posed at the end of the previ-
ous section: Simply put, can the 37% rule be beaten?
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The answer, even from the class of simple TNB rules, is a resounding
"yes." Of course, the 37% rule picks the highest mate value most often.
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applied to a set of 100 dowries covering all integer values from 1 to 100, 
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heuristics contained some that are better than the 37% rule on many di­
mensions, and so we restrict our discussion here to this class (though 
other types of simple search algorithms or rules will probably prove to 
have even better performance on some criteria). We have dubbed the class 
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D is chosen. (If no greater dowry turns up, then we assume that the 
searcher accepts the very last individual in the sequence, which is why 
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values, the cost of checking each potential mate, and whether or not N is 
even known, the mathematics quickly grew complicated, and we decided 
instead on a flexible simulation approach for answering these questions. 

We tested the behavior of TNB search algorithms with values of C from 
0% (corresponding to always choosing the first potential mate) to 15% in 
increments of 1 %, from 20% to 50% in increments of 5% (except around 
the interesting 37% value, where we again increased the resolution), and 
from 60% to 90% in increments of 10% (because we believed most of the 
action-that is, good performance-would occur in the lower C ranges). 
We ran each rule with different numbers N of potential mates, each with 
10,000 different randomly created dowry (or mate value) lists. We col­
lected statistics on the distribution of mate values selected by each algo­
rithm (including the mean, standard deviation, quartile distributions, and 
number of times the single best dowry value was chosen) and positions at 
which mates were selected (the mean and standard deviation). With these 
values in hand, we can answer the questions posed at the end of the previ­
ous section: Simply put, can the 37% rule be beaten? 

Search Performance With 100 Potential Mates 

The answer, even from the class of simple TNB rules, is a resounding 
"yes." Of course, the 37% rule picks the highest mate value most often. 
In figure 13-1, the "best" line shows how often the highest mate value was 



296 SOCIALINTELLIGENCE

~100
o
C>
Q)
Cij
() 80
~
o
co
w
.5 60
VI
Q)
Cij
:!E

-g 40
'0
Q)

Q)
en
'0 20
Q)
C>
co

~ 0
~
8?

Selected Mates inTop25%-
Selected Mates in Top 10%- - .

Selected Best Mate - - - -
Selected Mates in Bottom 25% .............

".--.........I , ,I , ......I i'i ,
'i',I :,i ,I : ,i ,

Ii',I _--1 "
,,--! ,

II -'-' i -__ ,..~ >,.

L~/ 1//-//-- "'"
o ,20 40 60 80 100

PercentC of 100PotentialMatesSeen BeforeSettingAspirationLevel

Figure 13-1: Chance of finding a mate in a particular value category, given
different percentages of mates checked (out of 100 total possible mates)
for setting the aspiration level before taldng the next best candidate seen.
The performance of the 37% rule on the various criteria is indicated by
the broken vertical line.

picked by a TNB algorithm, for different percentages C of possibilities
(potential mates) checked. (See Gilbert & Mosteller, 1966, figure 1, p. 42,
for the mathematically derived equivalent of this function.) The greatest
chance of choosing the highest mate value or dowry comes with a C of
(about) 37%, as expected (the maximum in the figure is not at exactly
37%, because of the stochastic nature of the simulations we ran). But this
curve also exhibits a flat maximum, so that it does not much matter what
exact value of C is used-the results are largely the same for C between
30% and 50%. And the chance of finding the highest-value mate for any
of these strategies is never higher than 37%, as mentioned in the first
section-not very good odds.

To an animal searching for a mate, this one in three chance of getting
the "best" member of the opposite sex is probably not a bet worth taking-
other "pretty good" potential mates will often be selected instead to save
search time or energy (or even because the animal cannot perceptually
distinguish between "best" and "pretty good"). In terms of having an
adaptive advantage over other competing mate seekers, it may suffice to
find a potential mate with a value in the top 10% of the population rela-
tively quickly. In figure 13-1, we see that a low value of C, 14%, yields
the highest chance, 83%, of selecting a mate in the top 10% of the value
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distribution. If one's standards are a bit more lax, just desiring a mate in
the highest quartile (top 25%), then only C= 7% of the initial stream of
potential mates need be checked to maximize this chance, yielding mates
in that top quartile over 92% of the time. Finally, rather than being risk-
seeking by searching for a mate in the top ranks of the population, an
animal may be risk-averse, preferring only to minimize its chances of
picking a mate in the bottom quartile of the population, where the mu-
tants lie. From the line marked "bottom 25%" we can see that the way to
achieve this goal is to use a much lower C of 3%, leading to a less than
1% chance of choosing a mate in the bottom (quarter) of the barrel. The
37% rule would pick these poor mates over 9% of the time, which is
much worse performance by risk-averse standards.

Alternatively, an animal might gain the greatest adaptive advantage
over its competitors by simply maximizing the expected value of its se-
lected mate. Figure 13-2 indicates how to accomplish this goal, showing
mean obtained mate value plotted against the percentage C of the poten-
tial mates that are checked to set the aspiration level D. Searchers using
C= 9% in this environment of 100 potential mates with mate values from
1 to 100 will select mates with the highest average mate value, nearly 92.
In contrast, if searchers were to use the 37% rule, their average would
drop to 81.

o . .
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Percent C of 100 Potential Mates Seen Before Setting Aspiration Level

Figure 13-2: Average value of selected mate (bars indicate one standard
deviation), given different percentages of mates checked (out of 100 total
possible mates) for setting the aspiration level before taking the next best
candidate seen. The performance of the 37% rule on this criterion is indi-
cated by the broken vertical line.
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(about) 37%, as expected (the maximum in the figure is not at exactly
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curve also exhibits a flat maximum, so that it does not much matter what
exact value of C is used-the results are largely the same for C between
30% and 50%. And the chance of finding the highest-value mate for any
of these strategies is never higher than 37%, as mentioned in the first
section-not very good odds.

To an animal searching for a mate, this one in three chance of getting
the "best" member of the opposite sex is probably not a bet worth taking-
other "pretty good" potential mates will often be selected instead to save
search time or energy (or even because the animal cannot perceptually
distinguish between "best" and "pretty good"). In terms of having an
adaptive advantage over other competing mate seekers, it may suffice to
find a potential mate with a value in the top 10% of the population rela-
tively quickly. In figure 13-1, we see that a low value of C, 14%, yields
the highest chance, 83%, of selecting a mate in the top 10% of the value
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distribution. If one's standards are a bit more lax, just desiring a mate in
the highest quartile (top 25%), then only C= 7% of the initial stream of
potential mates need be checked to maximize this chance, yielding mates
in that top quartile over 92% of the time. Finally, rather than being risk-
seeking by searching for a mate in the top ranks of the population, an
animal may be risk-averse, preferring only to minimize its chances of
picking a mate in the bottom quartile of the population, where the mu-
tants lie. From the line marked "bottom 25%" we can see that the way to
achieve this goal is to use a much lower C of 3%, leading to a less than
1% chance of choosing a mate in the bottom (quarter) of the barrel. The
37% rule would pick these poor mates over 9% of the time, which is
much worse performance by risk-averse standards.

Alternatively, an animal might gain the greatest adaptive advantage
over its competitors by simply maximizing the expected value of its se-
lected mate. Figure 13-2 indicates how to accomplish this goal, showing
mean obtained mate value plotted against the percentage C of the poten-
tial mates that are checked to set the aspiration level D. Searchers using
C= 9% in this environment of 100 potential mates with mate values from
1 to 100 will select mates with the highest average mate value, nearly 92.
In contrast, if searchers were to use the 37% rule, their average would
drop to 81.
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Figure 13-2: Average value of selected mate (bars indicate one standard
deviation), given different percentages of mates checked (out of 100 total
possible mates) for setting the aspiration level before taking the next best
candidate seen. The performance of the 37% rule on this criterion is indi-
cated by the broken vertical line.
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picked by a TNB algorithm, for different percentages C of possibilities
(potential mates) checked. (See Gilbert & Mosteller, 1966, figure 1, p. 42,
for the mathematically derived equivalent of this function.) The greatest
chance of choosing the highest mate value or dowry comes with a C of
(about) 37%, as expected (the maximum in the figure is not at exactly
37%, because of the stochastic nature of the simulations we ran). But this
curve also exhibits a flat maximum, so that it does not much matter what
exact value of C is used-the results are largely the same for C between
30% and 50%. And the chance of finding the highest-value mate for any
of these strategies is never higher than 37%, as mentioned in the first
section-not very good odds.

To an animal searching for a mate, this one in three chance of getting
the "best" member of the opposite sex is probably not a bet worth taking-
other "pretty good" potential mates will often be selected instead to save
search time or energy (or even because the animal cannot perceptually
distinguish between "best" and "pretty good"). In terms of having an
adaptive advantage over other competing mate seekers, it may suffice to
find a potential mate with a value in the top 10% of the population rela-
tively quickly. In figure 13-1, we see that a low value of C, 14%, yields
the highest chance, 83%, of selecting a mate in the top 10% of the value
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distribution. If one's standards are a bit more lax, just desiring a mate in
the highest quartile (top 25%), then only C= 7% of the initial stream of
potential mates need be checked to maximize this chance, yielding mates
in that top quartile over 92% of the time. Finally, rather than being risk-
seeking by searching for a mate in the top ranks of the population, an
animal may be risk-averse, preferring only to minimize its chances of
picking a mate in the bottom quartile of the population, where the mu-
tants lie. From the line marked "bottom 25%" we can see that the way to
achieve this goal is to use a much lower C of 3%, leading to a less than
1% chance of choosing a mate in the bottom (quarter) of the barrel. The
37% rule would pick these poor mates over 9% of the time, which is
much worse performance by risk-averse standards.

Alternatively, an animal might gain the greatest adaptive advantage
over its competitors by simply maximizing the expected value of its se-
lected mate. Figure 13-2 indicates how to accomplish this goal, showing
mean obtained mate value plotted against the percentage C of the poten-
tial mates that are checked to set the aspiration level D. Searchers using
C= 9% in this environment of 100 potential mates with mate values from
1 to 100 will select mates with the highest average mate value, nearly 92.
In contrast, if searchers were to use the 37% rule, their average would
drop to 81.
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Figure 13-2: Average value of selected mate (bars indicate one standard
deviation), given different percentages of mates checked (out of 100 total
possible mates) for setting the aspiration level before taking the next best
candidate seen. The performance of the 37% rule on this criterion is indi-
cated by the broken vertical line.
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for setting the aspiration level before taking the next_ be�t ��d1�ate seen. 
The performance of the 37% rule on the various cntena 1s md1cated by 
the broken vertical line. 
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distribution. If one's standards are a bit more lax, just desiring a mate in 

the highest quartile (top 25%), then only C =  7% of the initial stream of 
potential mates need be checked to maximize this chance, yielding mates 
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Alternatively, an animal might gain the greatest adaptive advantage 
over its competitors by simply maximizing the expected value of its se­
lected mate. Figure 13-2 indicates how to accomplish this goal, showing 
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possible mates) for setting the aspiration level before taking the next best 
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cated by the broken vertical line. 
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The values of the mates selected by these search algorithms may not

be the only criterion that matters to an organism seeking a mate-the time

and energy spent searching may also strongly influence the adaptiveness

of the algorithm used (see, e.g., Pomiankowski, 1987; Sullivan, 1994). In

figure 13-3, we see how many total potential mates must be looked at, on

average, before the final mate is chosen, varying as a function of the num-

ber of potential mates checked (Cx 100) to set the aspiration level before

mate selection. The 37% rule must look at 74 potential mates on average

before a final mate is selected. With lower values of C, the number of

mates that must be looked at falls off rapidly, with increasing advantage

as C decreases. The optimal value of C according to this criterion alone

would be C = 0, that is, pick the first potential mate encountered. When

combined with the other criteria, the importance assigned to this mean

search length variable will determine the precise trade-off between find-

ing a good mate and spending time and energy looking for that mate.

Searchperform(jnceWitha GreaterNumberof
PotentialMates

All of the criteria other than the chance of picking the single best mate

favor Take the Next Best rules that set their aspiration levels by looking

at less than 37% of the population. Checkihgabout 10% of the population
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Figure 13-3: Average position at which a mate is selected (bars show one

standard deviation), given different percentages of mates checked first

(out of 100 total possible mates) for setting the aspiration level before tak-

ing the next best candidate seen. The performance of the 37% rule on this

criterion is indicated by the broken vertical line.
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of potential mates before selecting the highest individual thereafter will

result in about the highest average mate value possible, along with a high
chance of choosing mates in the top quartile and top 10%. and will re-

quire a search through 34 or so potential mates before the final selection

is made. This seems like quite reasonable performance. given that it only

requires checking 10 individuals initially out of a population of 100. But

ancestral humans may have had effective mating group sizes much larger

than this. and certainly in modem environments one can expect to meet

more than 100 people who could potentially become mates. So what hap-
pens with our simple search heuristics if the population size is increased

to 1,000, where checking 10% means testing 100 individuals, which may
start to seem less like fun and more like hard work? Because the number

of individuals that must be tested by a TNB rule with a C% parameter

goes up linearly with the total population size N, these rules may not end

up being so fast and frugal, at least for larger populations, after all.

But figure 13-4, which shows how TNB rules fare in a population of

1,000 potential mates with mate values from 1 to 1,000, proves that our

fears of linear time increase are unwarranted. As before, the greatest

chance of picking the single highest-value mate comes from first checking

37% of the population. But to maximize the chances of picking a mate in
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Figure 13-4: Chance of finding a mate in a particular value category, given
different percentages of mates checked (out of 1,000 total possible mates)
for setting the aspiration level before taking the next best candidate seen.

Note that a smaller percentage of potential mates need now be checked to

maximize the chances of getting a top mate. The performance of the 37%

rule on the various criteria is indicated by the broken vertical line.
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of potential mates before selecting the highest individual thereafter will

result in about the highest average mate value possible, along with a high
chance of choosing mates in the top quartile and top 10%. and will re-

quire a search through 34 or so potential mates before the final selection

is made. This seems like quite reasonable performance. given that it only

requires checking 10 individuals initially out of a population of 100. But

ancestral humans may have had effective mating group sizes much larger

than this. and certainly in modem environments one can expect to meet

more than 100 people who could potentially become mates. So what hap-
pens with our simple search heuristics if the population size is increased

to 1,000, where checking 10% means testing 100 individuals, which may
start to seem less like fun and more like hard work? Because the number

of individuals that must be tested by a TNB rule with a C% parameter

goes up linearly with the total population size N, these rules may not end

up being so fast and frugal, at least for larger populations, after all.

But figure 13-4, which shows how TNB rules fare in a population of
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of potential mates before selecting the highest individual thereafter will

result in about the highest average mate value possible, along with a high
chance of choosing mates in the top quartile and top 10%. and will re-

quire a search through 34 or so potential mates before the final selection

is made. This seems like quite reasonable performance. given that it only

requires checking 10 individuals initially out of a population of 100. But

ancestral humans may have had effective mating group sizes much larger

than this. and certainly in modem environments one can expect to meet

more than 100 people who could potentially become mates. So what hap-
pens with our simple search heuristics if the population size is increased

to 1,000, where checking 10% means testing 100 individuals, which may
start to seem less like fun and more like hard work? Because the number

of individuals that must be tested by a TNB rule with a C% parameter

goes up linearly with the total population size N, these rules may not end

up being so fast and frugal, at least for larger populations, after all.

But figure 13-4, which shows how TNB rules fare in a population of

1,000 potential mates with mate values from 1 to 1,000, proves that our

fears of linear time increase are unwarranted. As before, the greatest

chance of picking the single highest-value mate comes from first checking

37% of the population. But to maximize the chances of picking a mate in
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Figure 13-4: Chance of finding a mate in a particular value category, given
different percentages of mates checked (out of 1,000 total possible mates)
for setting the aspiration level before taking the next best candidate seen.

Note that a smaller percentage of potential mates need now be checked to

maximize the chances of getting a top mate. The performance of the 37%

rule on the various criteria is indicated by the broken vertical line.
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The values of the mates selected by these search algorithms may not

be the only criterion that matters to an organism seeking a mate-the time

and energy spent searching may also strongly influence the adaptiveness

of the algorithm used (see, e.g., Pomiankowski, 1987; Sullivan, 1994). In

figure 13-3, we see how many total potential mates must be looked at, on

average, before the final mate is chosen, varying as a function of the num-

ber of potential mates checked (Cx 100) to set the aspiration level before

mate selection. The 37% rule must look at 74 potential mates on average

before a final mate is selected. With lower values of C, the number of

mates that must be looked at falls off rapidly, with increasing advantage

as C decreases. The optimal value of C according to this criterion alone

would be C = 0, that is, pick the first potential mate encountered. When

combined with the other criteria, the importance assigned to this mean

search length variable will determine the precise trade-off between find-

ing a good mate and spending time and energy looking for that mate.

Searchperform(jnceWitha GreaterNumberof
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All of the criteria other than the chance of picking the single best mate

favor Take the Next Best rules that set their aspiration levels by looking
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Figure 13-3: Average position at which a mate is selected (bars show one

standard deviation), given different percentages of mates checked first

(out of 100 total possible mates) for setting the aspiration level before tak-

ing the next best candidate seen. The performance of the 37% rule on this

criterion is indicated by the broken vertical line.
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of potential mates before selecting the highest individual thereafter will

result in about the highest average mate value possible, along with a high
chance of choosing mates in the top quartile and top 10%. and will re-

quire a search through 34 or so potential mates before the final selection

is made. This seems like quite reasonable performance. given that it only

requires checking 10 individuals initially out of a population of 100. But

ancestral humans may have had effective mating group sizes much larger

than this. and certainly in modem environments one can expect to meet

more than 100 people who could potentially become mates. So what hap-
pens with our simple search heuristics if the population size is increased

to 1,000, where checking 10% means testing 100 individuals, which may
start to seem less like fun and more like hard work? Because the number

of individuals that must be tested by a TNB rule with a C% parameter

goes up linearly with the total population size N, these rules may not end

up being so fast and frugal, at least for larger populations, after all.

But figure 13-4, which shows how TNB rules fare in a population of

1,000 potential mates with mate values from 1 to 1,000, proves that our

fears of linear time increase are unwarranted. As before, the greatest

chance of picking the single highest-value mate comes from first checking
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maximize the chances of getting a top mate. The performance of the 37%

rule on the various criteria is indicated by the broken vertical line.
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of potential mates before selecting the highest individual thereafter will 
result in about the highest average mate value possible, along with a high 
chance of choosing mates in the top quartile and top 10%, and will re­
quire a search through 34 or so potential mates before the final selection 
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to 1 ,000, where checking 10% means testing 100 individuals, which may 
start to seem less like fun and more like hard work? Because the number 
of individuals that must be tested by a TNB rule with a C% parameter 
goes up linearly with the total population size N, these rules may not end 
up being so fast and frugal, at least for larger populations, after all. 

But figure 13-4, which shows how TNB rules fare in a population of 
1 ,000 potential mates with mate values from 1 to 1 ,000, proves that our 
fears of linear time increase are unwarranted. As before, the greatest 
chance of picking the single highest-value mate comes from first checking 
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the top 10% (with a 97% probability), only 3% of the potential mates
need to be checked to set the aspiration level D; and for a mate in the top
25% (with a 98% probability), only 1% to 2% of the potential mates need
be checked. Similarly, to minimize the chances (to 0.3%) of choosing a
mate in the bottom 25%, only 1% of the population needs to be checked.

Thus, to maximize potential mate value and minimize risk in this pop-
ulation of 1,000 potential mates, somewhere between 1% and 3% of the
population, or 10 and 30 individuals, must be checked first to come up
with the aspiration level D. In the previous population of 100 individuals,
checking about 10 of them also resulted in top search performance judged
by these criteria. So despite the tenfold increase in population size, the
number of individuals to check increases only slightly. This suggests that
our TNB rules can be simplified. Instead of checking a certain percentage
of the potential mates to come up with an aspiration level D, we only
need to check a certain absolute number of potential mates. This' number
will work for population sizes varying over a wide range-for instance,
Try a Dozen (c~ 12) is appropriate for population sizes from 100 to sev-
eral thousand. This simplified search heuristic escapes the criticisms
raised earlier against the 37% rule: It performs better than the 37% rule
on multiple criteria, it does not need knowledge of the total population
size, and it does not require checking an inordinate number of individuals
before a choice can be made. These results indicate that Frey and Eichen-
berger's (1996) pessimism about short-searching humans ever finding an
appropriate mate may be unfounded-even a little bit of search may go a
long way.

On to Mutual Sequential Mate Search

That is, a little search can go a long way, if you are a despot who can force
a collection of hapless potential mates to parade past you until you choose
one. While we may start out with adolescent fantasies about getting the
person we most desire, most of us soon discover that the mating game
operates a bit differently. Imagine that you enter the game with your
brand-new egocentric Try a Dozen rule, all set to find that high-value
mate. You dutifully consider the first 12 people you randomly encounter,
eventually turning each one down but remembering how much you liked
the best. Starting with the 13th, you look at a succession of further possi-
bilities until finally, on person 20, you find what you have been looking
for: someone better than all the others you have already seen. Your rule
is satisfied, and so are you. You propose to your newfound mate-and are
summarily rejected. What went wrong?

The problem is, at the same time that you are evaluating prospective
mates, they are evaluating you in return. If you do not meet a particular
other person's standards, then no amount of proposing on your part is
going to win them over (in this restricted scenario, at least). And if you

1

I

I

I

FROM PRIDEAND PREJUDICETO PERSUASION:SATISFICINGIN MATESEARCH301

and everyone else in the population have been using the Try a Dozen rule
to form an aspiration level, then you and everyone else will have rather
high aspirations for whom you will agree to mate with. The trouble is
then that if you do not yourself have a high mate value, then you will not
be selected by anyone else as a potential mate, and will end up alone.

We can observe these effects by constructing a new simulation to ex-
plore how different mate search rules will work in a mutual search situa-
tion. We create a population of 100 males and 100 females, each with a
distinct mate value between 0.0 and 100.0, and each with accurate knowl-
edge of the mate values of members of the opposite sex, but not necessar-
ily knowing his or her own mate value. We give each of the 200 individu-
als the same search strategy, and first let them assess some specific
number of members of the opposite sex during "adolescence." During this
time, individuals can adjust their aspiration level, if their search rule uses
one. After this adolescence period, males and females are paired up at
random, at which point they can either make a proposal (an offer to mate)
to their partner or decline to do so. If both individuals in a pair make an
offer to each other, then this pair is deemed mated, and the two individu-
als are removed from the population. Otherwise, both individuals remain
in the mating pool to try again. This pairing-offering-mating cycle is re-
peated until every individual is mated, or until every individual has had
the opportunity to assess and propose to every member of the opposite
sex. We are interested in who gets paired up in this setting using different
search rules; other criteria, such as how long this pairing process takes,
are also of interest, but we will not discuss them here.

Figure 13-5 shows the number of mated pairs that will form in a popu-
lation of 100 males and 100 females all using a particular mate-search
strategy. If everyone uses Take the Next Best with C= 1%, checking one
individual to set their aspiration level, about half of the population will
pair up. But as we increase the adolescence period (number of potential
mates first checked), the number of mated pairs falls drastically. Thus if,
instead, everyone uses the Try a Dozen variant and checks 12 potential
mates for their aspiration level, only about eight mated pairs will be
formed. The reason for this can be found in figure 13-6, where we can see
the mean mate value of all mated individuals. For individuals using Take
the Next Best rules, the longer the adolescence (number of mates to check,
C), the higher the average mate value of all those who succeed in getting
mated. That is, TNB rules give everyone in the population aspirations that
are too high, so only the individuals who actually have the highest mate
values will find mutually agreeing mates. Everyone else ends up spending
Saturday night watching television.

But why not use TNB and check only a single individual? Then your
aspiration level will not be too high, and nearly half of the population
gets mated, which might be more reasonable. The problem lies in a third
measure of population-level mating success: the average difference in
mate value between partners in a mated pair. This is graphed in figure
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the top 10% (with a 97% probability), only 3% of the potential mates
need to be checked to set the aspiration level D; and for a mate in the top
25% (with a 98% probability), only 1% to 2% of the potential mates need
be checked. Similarly, to minimize the chances (to 0.3%) of choosing a
mate in the bottom 25%, only 1% of the population needs to be checked.

Thus, to maximize potential mate value and minimize risk in this pop-
ulation of 1,000 potential mates, somewhere between 1% and 3% of the
population, or 10 and 30 individuals, must be checked first to come up
with the aspiration level D. In the previous population of 100 individuals,
checking about 10 of them also resulted in top search performance judged
by these criteria. So despite the tenfold increase in population size, the
number of individuals to check increases only slightly. This suggests that
our TNB rules can be simplified. Instead of checking a certain percentage
of the potential mates to come up with an aspiration level D, we only
need to check a certain absolute number of potential mates. This' number
will work for population sizes varying over a wide range-for instance,
Try a Dozen (c~ 12) is appropriate for population sizes from 100 to sev-
eral thousand. This simplified search heuristic escapes the criticisms
raised earlier against the 37% rule: It performs better than the 37% rule
on multiple criteria, it does not need knowledge of the total population
size, and it does not require checking an inordinate number of individuals
before a choice can be made. These results indicate that Frey and Eichen-
berger's (1996) pessimism about short-searching humans ever finding an
appropriate mate may be unfounded-even a little bit of search may go a
long way.
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That is, a little search can go a long way, if you are a despot who can force
a collection of hapless potential mates to parade past you until you choose
one. While we may start out with adolescent fantasies about getting the
person we most desire, most of us soon discover that the mating game
operates a bit differently. Imagine that you enter the game with your
brand-new egocentric Try a Dozen rule, all set to find that high-value
mate. You dutifully consider the first 12 people you randomly encounter,
eventually turning each one down but remembering how much you liked
the best. Starting with the 13th, you look at a succession of further possi-
bilities until finally, on person 20, you find what you have been looking
for: someone better than all the others you have already seen. Your rule
is satisfied, and so are you. You propose to your newfound mate-and are
summarily rejected. What went wrong?

The problem is, at the same time that you are evaluating prospective
mates, they are evaluating you in return. If you do not meet a particular
other person's standards, then no amount of proposing on your part is
going to win them over (in this restricted scenario, at least). And if you
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and everyone else in the population have been using the Try a Dozen rule
to form an aspiration level, then you and everyone else will have rather
high aspirations for whom you will agree to mate with. The trouble is
then that if you do not yourself have a high mate value, then you will not
be selected by anyone else as a potential mate, and will end up alone.

We can observe these effects by constructing a new simulation to ex-
plore how different mate search rules will work in a mutual search situa-
tion. We create a population of 100 males and 100 females, each with a
distinct mate value between 0.0 and 100.0, and each with accurate knowl-
edge of the mate values of members of the opposite sex, but not necessar-
ily knowing his or her own mate value. We give each of the 200 individu-
als the same search strategy, and first let them assess some specific
number of members of the opposite sex during "adolescence." During this
time, individuals can adjust their aspiration level, if their search rule uses
one. After this adolescence period, males and females are paired up at
random, at which point they can either make a proposal (an offer to mate)
to their partner or decline to do so. If both individuals in a pair make an
offer to each other, then this pair is deemed mated, and the two individu-
als are removed from the population. Otherwise, both individuals remain
in the mating pool to try again. This pairing-offering-mating cycle is re-
peated until every individual is mated, or until every individual has had
the opportunity to assess and propose to every member of the opposite
sex. We are interested in who gets paired up in this setting using different
search rules; other criteria, such as how long this pairing process takes,
are also of interest, but we will not discuss them here.

Figure 13-5 shows the number of mated pairs that will form in a popu-
lation of 100 males and 100 females all using a particular mate-search
strategy. If everyone uses Take the Next Best with C= 1%, checking one
individual to set their aspiration level, about half of the population will
pair up. But as we increase the adolescence period (number of potential
mates first checked), the number of mated pairs falls drastically. Thus if,
instead, everyone uses the Try a Dozen variant and checks 12 potential
mates for their aspiration level, only about eight mated pairs will be
formed. The reason for this can be found in figure 13-6, where we can see
the mean mate value of all mated individuals. For individuals using Take
the Next Best rules, the longer the adolescence (number of mates to check,
C), the higher the average mate value of all those who succeed in getting
mated. That is, TNB rules give everyone in the population aspirations that
are too high, so only the individuals who actually have the highest mate
values will find mutually agreeing mates. Everyone else ends up spending
Saturday night watching television.

But why not use TNB and check only a single individual? Then your
aspiration level will not be too high, and nearly half of the population
gets mated, which might be more reasonable. The problem lies in a third
measure of population-level mating success: the average difference in
mate value between partners in a mated pair. This is graphed in figure
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the top 10% (with a 97% probability), only 3% of the potential mates
need to be checked to set the aspiration level D; and for a mate in the top
25% (with a 98% probability), only 1% to 2% of the potential mates need
be checked. Similarly, to minimize the chances (to 0.3%) of choosing a
mate in the bottom 25%, only 1% of the population needs to be checked.

Thus, to maximize potential mate value and minimize risk in this pop-
ulation of 1,000 potential mates, somewhere between 1% and 3% of the
population, or 10 and 30 individuals, must be checked first to come up
with the aspiration level D. In the previous population of 100 individuals,
checking about 10 of them also resulted in top search performance judged
by these criteria. So despite the tenfold increase in population size, the
number of individuals to check increases only slightly. This suggests that
our TNB rules can be simplified. Instead of checking a certain percentage
of the potential mates to come up with an aspiration level D, we only
need to check a certain absolute number of potential mates. This' number
will work for population sizes varying over a wide range-for instance,
Try a Dozen (c~ 12) is appropriate for population sizes from 100 to sev-
eral thousand. This simplified search heuristic escapes the criticisms
raised earlier against the 37% rule: It performs better than the 37% rule
on multiple criteria, it does not need knowledge of the total population
size, and it does not require checking an inordinate number of individuals
before a choice can be made. These results indicate that Frey and Eichen-
berger's (1996) pessimism about short-searching humans ever finding an
appropriate mate may be unfounded-even a little bit of search may go a
long way.

On to Mutual Sequential Mate Search

That is, a little search can go a long way, if you are a despot who can force
a collection of hapless potential mates to parade past you until you choose
one. While we may start out with adolescent fantasies about getting the
person we most desire, most of us soon discover that the mating game
operates a bit differently. Imagine that you enter the game with your
brand-new egocentric Try a Dozen rule, all set to find that high-value
mate. You dutifully consider the first 12 people you randomly encounter,
eventually turning each one down but remembering how much you liked
the best. Starting with the 13th, you look at a succession of further possi-
bilities until finally, on person 20, you find what you have been looking
for: someone better than all the others you have already seen. Your rule
is satisfied, and so are you. You propose to your newfound mate-and are
summarily rejected. What went wrong?

The problem is, at the same time that you are evaluating prospective
mates, they are evaluating you in return. If you do not meet a particular
other person's standards, then no amount of proposing on your part is
going to win them over (in this restricted scenario, at least). And if you
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and everyone else in the population have been using the Try a Dozen rule
to form an aspiration level, then you and everyone else will have rather
high aspirations for whom you will agree to mate with. The trouble is
then that if you do not yourself have a high mate value, then you will not
be selected by anyone else as a potential mate, and will end up alone.

We can observe these effects by constructing a new simulation to ex-
plore how different mate search rules will work in a mutual search situa-
tion. We create a population of 100 males and 100 females, each with a
distinct mate value between 0.0 and 100.0, and each with accurate knowl-
edge of the mate values of members of the opposite sex, but not necessar-
ily knowing his or her own mate value. We give each of the 200 individu-
als the same search strategy, and first let them assess some specific
number of members of the opposite sex during "adolescence." During this
time, individuals can adjust their aspiration level, if their search rule uses
one. After this adolescence period, males and females are paired up at
random, at which point they can either make a proposal (an offer to mate)
to their partner or decline to do so. If both individuals in a pair make an
offer to each other, then this pair is deemed mated, and the two individu-
als are removed from the population. Otherwise, both individuals remain
in the mating pool to try again. This pairing-offering-mating cycle is re-
peated until every individual is mated, or until every individual has had
the opportunity to assess and propose to every member of the opposite
sex. We are interested in who gets paired up in this setting using different
search rules; other criteria, such as how long this pairing process takes,
are also of interest, but we will not discuss them here.

Figure 13-5 shows the number of mated pairs that will form in a popu-
lation of 100 males and 100 females all using a particular mate-search
strategy. If everyone uses Take the Next Best with C= 1%, checking one
individual to set their aspiration level, about half of the population will
pair up. But as we increase the adolescence period (number of potential
mates first checked), the number of mated pairs falls drastically. Thus if,
instead, everyone uses the Try a Dozen variant and checks 12 potential
mates for their aspiration level, only about eight mated pairs will be
formed. The reason for this can be found in figure 13-6, where we can see
the mean mate value of all mated individuals. For individuals using Take
the Next Best rules, the longer the adolescence (number of mates to check,
C), the higher the average mate value of all those who succeed in getting
mated. That is, TNB rules give everyone in the population aspirations that
are too high, so only the individuals who actually have the highest mate
values will find mutually agreeing mates. Everyone else ends up spending
Saturday night watching television.

But why not use TNB and check only a single individual? Then your
aspiration level will not be too high, and nearly half of the population
gets mated, which might be more reasonable. The problem lies in a third
measure of population-level mating success: the average difference in
mate value between partners in a mated pair. This is graphed in figure
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operates a bit differently. Imagine that you enter the gam.e "".1th your 

brand-new egocentric Try a Dozen rule, all set to find that high-value 
mate. You dutifully consider the first 12 people you randomly enco�ter, 

eventually turning each one down but remembering �ow much you hke� 
the best. Starting with the 13th, you look at a succession of further po�s1-

bilities until finally, on person 20, you find what you have been looking 
for: someone better than all the others you have already seen. Your rule 
is satisfied, and so are you. You propose to your newfound mate-and are 
summarily rejected. What went wrong? . . 

The problem is , at the same time that you are evaluating prosp�ctive 

mates, they are evaluating you in return. If you do not meet a particul� 
other person's standards, then no am.ount of proposing on your �art is 

going to win them over (in this restricted scenario, at least). And if you 
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and everyone else in the population have been using the Try a Dozen rule 
to form an aspiration level, then you and everyone else will have rather 
high aspirations for whom you will agree to mate with. The trouble is 
then that if you do not yourself have a high mate value, then you will not 
be selected by anyone else as a potential mate, and will end up alone. 

We can observe these effects by constructing a new simulation to ex­
plore how different mate search rules will work in a mutual search situa­
tion. We create a population of 100 males and 100 females, each with a 
distinct mate value between 0.0 and 100.0, and each with accurate knowl­
edge of the mate values of members of the opposite sex, but not necessar­
ily knowing his or her own mate value. We give each of the 200 individu­
als the same search strategy, and first let them assess some specific 
number of members of the opposite sex during "adolescence." During this 
time, individuals can adjust their aspiration level, if their search rule uses 
one. After this adolescence period, males and females are paired up at 
random, at which point they can either make a proposal (an offer to mate) 
to their partner or decline to do so. If both individuals in a pair make an 
offer to each other, then this pair is deemed mated, and the two individu­
als are removed from the population. Otherwise, both individuals remain 
in the mating pool to try again. This pairing-offering-mating cycle is re­
peated until every individual is mated, or until every individual has had 
the opportunity to assess and propose to every member of the opposite 
sex. We are interested in who gets paired up in this setting using different 
search rules; other criteria, such as how long this pairing process takes, 
are also of interest, but we will not discuss them here. 

Figure 13-5 shows the number of mated pairs that will form in a popu­
lation of 100 males and 100 females all using a particular mate-search 
strategy. If everyone uses Take the Next Best with C = 1 % , checking one 
individual to set their aspiration level, about half of the population will 
pair up. But as we increase the adolescence period (number of potential 
mates first checked), the number of mated pairs falls drastically. Thus if, 
instead, everyone uses the Try a Dozen variant and checks 12 potential 
mates for their aspiration level, only about eight mated pairs will be 
formed. The reason for this can be found in figure 13-6, where we can see 
the mean mate value of all mated individuals. For individuals using Take 
the Next Best rules, the longer the adolescence (number of mates to check, 
C), the higher the average mate value of all those who succeed in getting 
mated. That is, TNB rules give everyone in the population aspirations that 
are too high, so only the individuals who actually have the highest mate 
values will find mutually agreeing mates. Everyone else ends up spending 
Saturday night watching television. 

But why not use TNB and check only a single individual? Then your 
aspiration level will not be too high, and nearly half of the population 
gets mated, which might be more reasonable. The problem lies in a third 
measure of population-level mating success: the average difference in 
mate value between partners in a mated pair. This is graphed in figure 
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Figure 13-5: Number of mated pairs formed in a population with all indi-
viduals using a particular mutual sequential mate search strategy, graphed
against the length of the adolescence period (during which an aspiration
level can be learned). Higher values indicate more successful mate search
strategies.

13-7. Here we can see that, even though TNB rules with very short adoles-

cence periods do yield a good number of mated pairs, those pairs are

rather mismatched-there is an average difference of nearly 25 between

partners' mate values. Such a large difference would make the pairings

formed very unstable in the game theory sense discussed in the first sec-

tion: Many individuals would be inclined to switch partners. So how can

we find a mutual sequential mate search rule that not only yields a high

proportion of the population finding good mates (high values in figure
13-5), and finds mates for individuals from a wide and unbiased range of

mate values themselves (values around 50 in figure 13-6), but also suc-

ceeds in pairing up individuals who are well matched to each other in

terms of mate value (low values in figure 13-7)?
Now imagine that, considerably chastened by your earlier failure on

the mating market, you reconcile yourself to be more realistic this time,

and only aspire to a mate with a value similar to your own, rather than

some lofty Hollywood-inspired ideal. In fact, out of humility you set a

threshold five points below your own mate value, proposing to any indi-
vidual with a mate value above this level. Now how will you fare, and

how will everyone else do if they use similarly humble thresholds? In

figure 13.5, we see that this strategy results in a high proportion of the
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Figure 13-6: Mean mate value of all mated individuals in a population
with all individuals using a particular mutual sequential mate search
strategy, graphed against the length of the adolescence period. Middle val-
ues (around 50) indicate more successful egalitarian mate search strategies
(for instance, those that enable more than just the elite to find mates).

population finding mates. In this case, adolescence does not involve

learning or adjusting your aspiration level, because that value is fixed,

but only represents an extended nonfertile period during which you meet

people but cannot propose to them (and you still cannot go back to them

later either). The length of adolescence has little effect on the performance

of this humble mate search strategy. Only when adolescence gets very

long does it start to reduce the number of mated pairs, simply because

there is no longer enough of the population left to search through to en-
sure finding a good-enough partner.

This mate-value-based humble search strategy also does well on our

other measures. Because most of the population gets paired up, the aver-

agemate value of those mated is around 50 (figure13-6).It also succeeds
in p~ individuals with very similar mate values (figure 13-7), making

for a stable arrangement. That is, this strategy successfully sorts the popu-

lation by mate value as it pairs the individuals. So this seems like a good

mutual sequential mate search strategy to use. But there is a problem:

Knowing one's own mate value is not necessarily an easy thing. We can-

not be born with it, because it is both context sensitive (it depends on the

others around us) and changes over time as we develop. We cannot sim-
ply observe ourselves to determine it, because we do not see ourselves in
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cence periods do yield a good number of mated pairs, those pairs are

rather mismatched-there is an average difference of nearly 25 between

partners' mate values. Such a large difference would make the pairings

formed very unstable in the game theory sense discussed in the first sec-

tion: Many individuals would be inclined to switch partners. So how can

we find a mutual sequential mate search rule that not only yields a high

proportion of the population finding good mates (high values in figure
13-5), and finds mates for individuals from a wide and unbiased range of

mate values themselves (values around 50 in figure 13-6), but also suc-

ceeds in pairing up individuals who are well matched to each other in

terms of mate value (low values in figure 13-7)?
Now imagine that, considerably chastened by your earlier failure on

the mating market, you reconcile yourself to be more realistic this time,

and only aspire to a mate with a value similar to your own, rather than

some lofty Hollywood-inspired ideal. In fact, out of humility you set a

threshold five points below your own mate value, proposing to any indi-
vidual with a mate value above this level. Now how will you fare, and

how will everyone else do if they use similarly humble thresholds? In

figure 13.5, we see that this strategy results in a high proportion of the
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learning or adjusting your aspiration level, because that value is fixed,

but only represents an extended nonfertile period during which you meet

people but cannot propose to them (and you still cannot go back to them

later either). The length of adolescence has little effect on the performance

of this humble mate search strategy. Only when adolescence gets very

long does it start to reduce the number of mated pairs, simply because

there is no longer enough of the population left to search through to en-
sure finding a good-enough partner.

This mate-value-based humble search strategy also does well on our

other measures. Because most of the population gets paired up, the aver-

agemate value of those mated is around 50 (figure13-6).It also succeeds
in p~ individuals with very similar mate values (figure 13-7), making

for a stable arrangement. That is, this strategy successfully sorts the popu-

lation by mate value as it pairs the individuals. So this seems like a good

mutual sequential mate search strategy to use. But there is a problem:
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13-7. Here we can see that, even though TNB rules with very short adoles-

cence periods do yield a good number of mated pairs, those pairs are

rather mismatched-there is an average difference of nearly 25 between

partners' mate values. Such a large difference would make the pairings

formed very unstable in the game theory sense discussed in the first sec-

tion: Many individuals would be inclined to switch partners. So how can

we find a mutual sequential mate search rule that not only yields a high

proportion of the population finding good mates (high values in figure
13-5), and finds mates for individuals from a wide and unbiased range of

mate values themselves (values around 50 in figure 13-6), but also suc-

ceeds in pairing up individuals who are well matched to each other in

terms of mate value (low values in figure 13-7)?
Now imagine that, considerably chastened by your earlier failure on

the mating market, you reconcile yourself to be more realistic this time,

and only aspire to a mate with a value similar to your own, rather than

some lofty Hollywood-inspired ideal. In fact, out of humility you set a

threshold five points below your own mate value, proposing to any indi-
vidual with a mate value above this level. Now how will you fare, and

how will everyone else do if they use similarly humble thresholds? In

figure 13.5, we see that this strategy results in a high proportion of the
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learning or adjusting your aspiration level, because that value is fixed,

but only represents an extended nonfertile period during which you meet

people but cannot propose to them (and you still cannot go back to them

later either). The length of adolescence has little effect on the performance

of this humble mate search strategy. Only when adolescence gets very

long does it start to reduce the number of mated pairs, simply because

there is no longer enough of the population left to search through to en-
sure finding a good-enough partner.

This mate-value-based humble search strategy also does well on our

other measures. Because most of the population gets paired up, the aver-

agemate value of those mated is around 50 (figure13-6).It also succeeds
in p~ individuals with very similar mate values (figure 13-7), making

for a stable arrangement. That is, this strategy successfully sorts the popu-

lation by mate value as it pairs the individuals. So this seems like a good
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cence periods do yield a good number of mated pairs, those pairs are

rather mismatched-there is an average difference of nearly 25 between

partners' mate values. Such a large difference would make the pairings

formed very unstable in the game theory sense discussed in the first sec-

tion: Many individuals would be inclined to switch partners. So how can

we find a mutual sequential mate search rule that not only yields a high

proportion of the population finding good mates (high values in figure
13-5), and finds mates for individuals from a wide and unbiased range of

mate values themselves (values around 50 in figure 13-6), but also suc-

ceeds in pairing up individuals who are well matched to each other in

terms of mate value (low values in figure 13-7)?
Now imagine that, considerably chastened by your earlier failure on

the mating market, you reconcile yourself to be more realistic this time,

and only aspire to a mate with a value similar to your own, rather than

some lofty Hollywood-inspired ideal. In fact, out of humility you set a

threshold five points below your own mate value, proposing to any indi-
vidual with a mate value above this level. Now how will you fare, and

how will everyone else do if they use similarly humble thresholds? In

figure 13.5, we see that this strategy results in a high proportion of the
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population finding mates. In this case, adolescence does not involve

learning or adjusting your aspiration level, because that value is fixed,

but only represents an extended nonfertile period during which you meet

people but cannot propose to them (and you still cannot go back to them

later either). The length of adolescence has little effect on the performance

of this humble mate search strategy. Only when adolescence gets very

long does it start to reduce the number of mated pairs, simply because

there is no longer enough of the population left to search through to en-
sure finding a good-enough partner.

This mate-value-based humble search strategy also does well on our

other measures. Because most of the population gets paired up, the aver-

agemate value of those mated is around 50 (figure13-6).It also succeeds
in p~ individuals with very similar mate values (figure 13-7), making

for a stable arrangement. That is, this strategy successfully sorts the popu-

lation by mate value as it pairs the individuals. So this seems like a good

mutual sequential mate search strategy to use. But there is a problem:

Knowing one's own mate value is not necessarily an easy thing. We can-

not be born with it, because it is both context sensitive (it depends on the

others around us) and changes over time as we develop. We cannot sim-
ply observe ourselves to determine it, because we do not see ourselves in
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Figure 13-5:  Number of mated pairs formed in a population with all indi­
viduals using a particular mutual sequential mate search strategy, graphed 
against the length of the adolescence period (during which an aspiration 
level can be learned). Higher values indicate more successful mate search 
strategies. 

13-7. Here we can see that, even though TNB rules with very short adoles­
cence periods do yield a good number of mated pairs. those pairs are 
rather mismatched-there is an average difference of nearly 25 between 
partners' mate values. Such a large difference would make the pairings 
formed very unstable in the game theory sense discussed in the first sec­
tion: Many individuals would be inclined to switch partners. So how can 
we find a mutual sequential mate search rule that not only yields a high 
proportion. of the population finding good mates (high values in figure 
13-5), and finds mates for individuals from a wide and unbiased range of 
mate values themselves (values around 50 in figure 13-6), but also suc­
ceeds in pairing up individuals who are well matched to each other in 
terms of mate value (low values in figure 13-7)? 

Now imagine that, considerably chastened by your earlier failure on 
the mating market, you reconcile yourself to be more realistic this time, 
and only aspire to a mate with a value s�ilar to your own, rather than 
some lofty Hollywood-inspired ideal. In fact, out of humility you set a 
threshold five points below your own mate value, proposing to any indi­
vidual with a mate value above this level. Now how will you fare, and 
how will everyone else do if they use similarly humble thresholds? In 
figure 13-5, we see that this strategy results in a high proportion of the 
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Figure 13-6: Mean mate value of all mated individuals in a population 
with all individuals using a particular mutual sequential mate search 
strategy, graphed against the length of the adolescence period. Middle val­
ues �around 50) indicate more successful egalitarian mate search strategies 
(for rnstance, those that enable more than just the elite to find mates). 

population finding mates. In this case, adolescence does not involve 
learning or adjusting your aspiration level, because that value is fixed. 
but only represents an extended nonfertile period during which you meet 
people but cannot propose to them (and you still cannot go back to them 
later either}. The length of adolescence has little effect on the performance 
of this humble mate search strategy. Only when adolescence gets very 
long does it start to reduce the number of mated pairs, simply because 
there is no longer enough of the population left to search through to en­
sure finding a good-enough partner. 

This mate-value-based humble search strategy also does well on our 
other measures. Because most of the population gets paired up, the aver­
age mate value of those mated is around 50 (figure 1 3-6). It also succeeds 
in. pairing individuals with very similar mate values (figure 13-7), making 
for a stable arrangement. That is, this strategy successfully sorts the popu­
lation by mate value as it pairs the individuals. So this seems like a good 
mutual sequential mate search strategy to use. But there is a problem: 
Knowing one's own mate value is not necessarily an easy thing. We can­
not be born with it, because it is both context sensitive (it depends on the 
others around us} and changes over time as we develop. We cannot sun­
ply observe ourselves to determine it, because we do not see ourselves in 
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Figure 13-7: Mean difference between the mate values of partners in
mated pairs formed in a population with I!ll,individuals using a particular
mutual sequential mate search strategy, graphed against the length of the
adolescence period. Lower values indicate mate search strategies that are
more successful at forming well-matched pairs.

the same way that the others who judge us as potential mates see us. We
do not even know the proper criteria on which to judge ourselves from
the perspective of the opposite sex. Without this initial knowledge, then,
we must somehow estimate our own mate value, if we are to use it to form
our aspiration level.

Thus we must take another step toward making our mate search strat-
egy less and less self-centered. We started by just considering what we
thought of everyone else (Take the Next Best), then we used what we
thought of ourselves (self-based aspiration level), and now we will look
at what others think of us (adjusting our self-perception based on feed-
back). The first feedback-based method to try is to raise our aspiration
level (the same as our self-perceived estimate of our own mate value) ev-
ery time we get a proposal from someone else, and lower our aspiration
level every time someone else does not propose to us. We will do this for
a certain adolescence period again (i.e., use this feedback from a certain
number of individuals we first encounter). The amount of adjustment we
make to our aspiration level on each instance of feedback is inversely
determined by the total length of our adolescence: If we have a short ado-
lescence, we should make more adjustment (learn quickly) at each step,
while if we have a long adolescence, we can learn more slowly. Thus,
starting with an aspiration level of 50, we use adjustment = 50/(1 + C)

T
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where C is the number of people we check out, and get checked out by,
in adolescence. This rule pairs up about 40% of the population ("Adjust
up/down" in figure 13-5), but preferentially in the lower half of the popu-
lation (the mean mate value of mated individuals is about 25 in figure
13-6). What is happening here?

The problem with this aspiration-adjustment heuristic is that it is vain.
Whenever a proposal comes from anyone, no matter what that person's
mate value, the individual being proposed to gets excited and raises his
or her aspiration level. Thus, individuals with mate values above 50 will
get a lot of offers and then raise their aspirations to be too high, while
those with mate values below 50 will more often get rejections, lower
their aspirations, and as a consequence continue to boost the egos of the
other half of the population. But individuals in the lower half, with the
crushed aspirations, also succeed in finding mates, whereas those in the
too-proud top half of the population often do not.

Instead of just taking someone else's word for it on whether you have
a high mate value, you should also consider the source: What is the mate
value of the other individual who is assessing you? If that person's mate
value is higher than you think your own is, and he or she still proposes
to you, then you should raise your own self-assessment, under the as-
sumption that the other is well-calibrated and so is giving you accurate
feedback about your own mate value. (You would always expect offers
from individuals with mate values lower than your own self-image, so you
should not use their offers to boost your self-image.) Similarly, if you get
a refusal (lack of offer) from an individual with a mate value lower than
your own self-perception, then this should make you think twice about
your self-image, and lead you to lower your aspirations as well. (Again,
lack of offers from those who are higher value than you think you are
should not affect your self-image.)

If we make adjustments of the same size as the previous strategy, but
now relative to the mate value of the other individual, we get about 40%
of the population paired up again ("Adjust relative" in figure 13-5), but
now it is the top half of the population that finds each other (mean paired
mate value is about 75 in figure 13-6). However, they do not do a very
good job of matching up-this strategy gives the worst mismatch between
mated partners (about 10 points difference, in figure 13-7). The problem
this time is that we are still using an adjustment that is independent of
the mate values involved. The adjustment here is a fixed value depending
on~y on the length of the adolescence period. But it does not make good
sense' to make the same upward adjustment both when someone with a
mate value of 100 proposes to you, and when someone with a mate value
of 60 proposes to you (assuming your self-image starts at 50, say). You
should be much more excited about the former offer than the latter, and
you should raise your self-estimate correspondingly higher. In the next
strategy, we do just that.

As we have become less self-centered in our strategies, we have also
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Figure 13-7: Mean difference between the mate values of partners in
mated pairs formed in a population with I!ll,individuals using a particular
mutual sequential mate search strategy, graphed against the length of the
adolescence period. Lower values indicate mate search strategies that are
more successful at forming well-matched pairs.

the same way that the others who judge us as potential mates see us. We
do not even know the proper criteria on which to judge ourselves from
the perspective of the opposite sex. Without this initial knowledge, then,
we must somehow estimate our own mate value, if we are to use it to form
our aspiration level.

Thus we must take another step toward making our mate search strat-
egy less and less self-centered. We started by just considering what we
thought of everyone else (Take the Next Best), then we used what we
thought of ourselves (self-based aspiration level), and now we will look
at what others think of us (adjusting our self-perception based on feed-
back). The first feedback-based method to try is to raise our aspiration
level (the same as our self-perceived estimate of our own mate value) ev-
ery time we get a proposal from someone else, and lower our aspiration
level every time someone else does not propose to us. We will do this for
a certain adolescence period again (i.e., use this feedback from a certain
number of individuals we first encounter). The amount of adjustment we
make to our aspiration level on each instance of feedback is inversely
determined by the total length of our adolescence: If we have a short ado-
lescence, we should make more adjustment (learn quickly) at each step,
while if we have a long adolescence, we can learn more slowly. Thus,
starting with an aspiration level of 50, we use adjustment = 50/(1 + C)

T
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where C is the number of people we check out, and get checked out by,
in adolescence. This rule pairs up about 40% of the population ("Adjust
up/down" in figure 13-5), but preferentially in the lower half of the popu-
lation (the mean mate value of mated individuals is about 25 in figure
13-6). What is happening here?

The problem with this aspiration-adjustment heuristic is that it is vain.
Whenever a proposal comes from anyone, no matter what that person's
mate value, the individual being proposed to gets excited and raises his
or her aspiration level. Thus, individuals with mate values above 50 will
get a lot of offers and then raise their aspirations to be too high, while
those with mate values below 50 will more often get rejections, lower
their aspirations, and as a consequence continue to boost the egos of the
other half of the population. But individuals in the lower half, with the
crushed aspirations, also succeed in finding mates, whereas those in the
too-proud top half of the population often do not.

Instead of just taking someone else's word for it on whether you have
a high mate value, you should also consider the source: What is the mate
value of the other individual who is assessing you? If that person's mate
value is higher than you think your own is, and he or she still proposes
to you, then you should raise your own self-assessment, under the as-
sumption that the other is well-calibrated and so is giving you accurate
feedback about your own mate value. (You would always expect offers
from individuals with mate values lower than your own self-image, so you
should not use their offers to boost your self-image.) Similarly, if you get
a refusal (lack of offer) from an individual with a mate value lower than
your own self-perception, then this should make you think twice about
your self-image, and lead you to lower your aspirations as well. (Again,
lack of offers from those who are higher value than you think you are
should not affect your self-image.)

If we make adjustments of the same size as the previous strategy, but
now relative to the mate value of the other individual, we get about 40%
of the population paired up again ("Adjust relative" in figure 13-5), but
now it is the top half of the population that finds each other (mean paired
mate value is about 75 in figure 13-6). However, they do not do a very
good job of matching up-this strategy gives the worst mismatch between
mated partners (about 10 points difference, in figure 13-7). The problem
this time is that we are still using an adjustment that is independent of
the mate values involved. The adjustment here is a fixed value depending
on~y on the length of the adolescence period. But it does not make good
sense' to make the same upward adjustment both when someone with a
mate value of 100 proposes to you, and when someone with a mate value
of 60 proposes to you (assuming your self-image starts at 50, say). You
should be much more excited about the former offer than the latter, and
you should raise your self-estimate correspondingly higher. In the next
strategy, we do just that.

As we have become less self-centered in our strategies, we have also

304 SOCIAL INTELLIGENCE 

Figure 13-7: Mean difference between the mate values of partners in 
mated pairs formed in a population with �I ,individuals using a particular 
mutual sequential mate search strategy, graphed against the length of the 
adolescence period. Lower values indicate mate search strategies that are 
more successful at forming well-matched pairs. 

the same way that the others who judge us as potential mates see us. We 
do not even know the proper criteria on which to judge ourselves from 
the perspective of the opposite sex. Without this initial knowledge, then, 
we must somehow estimate our own mate value, if we are to use it to form 
our aspiration level. 

Thus we must take another step toward making our mate search strat­
egy less and less self-centered. We started by just considering what we 
thought of everyone else (Take the Next Best), then we used what we 
thought of ourselves (self-based aspiration level), and now we will look 
at what others think of us (adjusting our self-perception based on feed­
back). The first feedback-based method to try is to raise our aspiration 
level (the same as our self-perceived estimate of our own mate value) ev­
ery time we get a proposal from someone else, and lower our aspiration 
level every time someone else does not propose to us. We will do this for 
a certain adolescence period again (i.e., use this feedback from a certain 
number of individuals we first encounter). The amount of adjustment we 
make to our aspiration level on each instance of feedback is inversely 
determined by the total length of our adolescence: If we have a short ado­
lescence, we should make more adjustment (learn quickly) at each step, 
while if we have a long adolescence, we can learn more slowly. Thus, 
starting with an aspiration level of 50, we use adjustment = 50/(1 + C) 

r 
I FROM PRIDE AND PREJUDICE TO PERSUASION: SATISFICING IN MATE SEARCH 305 

where C is the number of people we check out, and get checked out by, 
in adolescence. This rule pairs up about 40% of the population ("Adjust 
up/down" in figure 13-5), but preferentially in the lower half of the popu­
lation (the mean mate value of mated individuals is about 25 in figure 
13-6). What is happening here? 

The problem with this aspiration-adjustment heuristic is that it is vain. 
Whenever a proposal comes from anyone, no matter what that person's 
mate value, the individual being proposed to gets excited and raises his 
or her aspiration level. Thus, individuals with mate values above 50 will 
get a lot of offers and then raise their aspirations to be too high, while 
those with mate values below 50 will more often get rejections, lower 
their aspirations, and as a consequence continue to boost the egos of the 
other half of the population. But individuals in the lower half, with the 
crushed aspirations, also succeed in finding mates, whereas those in the 
too-proud top half of the population often do not. 

Instead of just taking someone else's word for it on whether you have 
a high mate value, you should also consider the source: What is the mate 
value of the other individual who is assessing you? If that person's mate 
value is higher than you think your own is, and he or she still proposes 
to you, then you should raise your own self-assessment, under the as­
sumption that the other is well-calibrated and so is giving you accurate 
feedback about your own mate value. (You would always expect offers 
from individuals with mate values lower than your own self-image, so you 
should not use their offers to boost your self-image.) Similarly, if you get 
a refusal (lack of offer) from an individual with a mate value lower than 
your own self-perception, then this should make you think twice about 
your self-image, and lead you to lower your aspirations as well. (Again, 
lack of offers from those who are higher value than you think you are 
should not affect your self-image.) 

If we make adjustments of the same size as the previous strategy, but 
now relative to the mate value of the other individual, we get about 40% 
of the population paired up again ("Adjust relative" in figure 13-5), but 
now it is the top half of the population that finds each other (mean paired 
mate value is about 75 in figure 13-6). However, they do not do a very 
good job of matching up-this strategy gives the worst mismatch between 
mated partners (about 10 points difference, in figure 13-7). The problem 
this time is that we are still using an adjustment that is independent of 
the mate values involved. The adjustment here is a fixed value depending 
on�y on the length of the adolescence period. But it does not make good 
sense to make the same upward adjustment both when someone with a 
mate value of 100 proposes to you, and when someone with a mate value 
of 60 proposes to you (assuming your self-image starts at 50, say). You 
should be much more excited about the former offer than the latter, and 
you should raise your self-estimate correspondingly higher. In the next 
strategy, we do just that. 

As we have become less self-centered in our strategies, we have also 



306 SOCIALINTELLIGENCE

added more information about the other potential mates we are interacting
with. First, we looked at whether they proposed to us; next, we consid-
ered their proposals and the direction of their mate values relative to our
own (Le., we only needed to know if the values were bigger or smaller,
not the exact values themselves); and now we consider their proposals,
and tlle actual difference between their mate values and our self-estimate
of our own mate value. If someone proposes to us whose mate value is
higher than our self-image, then we raise our self-image (and hence our
aspiration level) by half of the difference between the two. If a potential
mate encountered during adolescence does not propose, and that person's
mate value is lower than our self-image, then we lower our self-image by
half of the difference. In this way, we put more weight on the feedback
we get from individuals who are further away from our self-image.

When we do so, we end up with the best aspiration-learning strategy
out of those we have considered so far. For short to medium adolescence

lengths, this strategy pairs up about half of the population ("Adjust rela-
-tive/2" in figure'13-5). The more learning it can do (Le., the longer adoles-
cence is), the closer it comes to pairing up an even distribution of individ-
uals (figure 13-6). And with more learning, the mismatch between mated
partners falls to near that of the humble mate-value-based strategy (figure
13-7).

Thus, we are getting close to a reasonable mutual sequential mate
search strategy. It involves estimating one's own mate value by using the
feedback of offers and refusals from members of the opposite sex, assum-
ing that we know their mate values. But note that this kind of simple
strategy does not assume that we know, or calculate, anything about the
population as a whole. We do not have to keep track of means or standard
deviations of the mate values encountered, for instance (as some of Mar-
tin & Moon's, 1992, strategies required). We also do not have to calculate
optimal search times (as many of the approaches to the secretary/dowry
problem required)-instead, most of the criteria seem to reach asymptote
after checking about 20 individuals. And we do not need prior knowledge
of the entire population, distinguishing this approach from that consid-
ered in two-sided matching problems (Roth & Sotomayor, 1990). Just
seeing one individual after another, and learning about ourselves in the
process, is enough.

FurtherDirections

We have presented here a collection of simple satisficing heuristics for
one-sided and mutual search that can learn appropriate aspiration levels
after checking only a few possible choices. As such, these heuristics fit
into our overall framework of bounded rationality: They use as little of the
available information as possible and still yield satisfactory performance.
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These rules are also ecologically rational, relying on the structure of infor-
mation in the environment-here, the pattern of proposals and rejections
made by members of the opposite sex-to bootstrap their adaptive choice
behavior.

Of course, we have still left much out of this discussion of mate search.
Populations are never fixed, and the mating game does not proceed in
discrete periods during which everyone in a predetermined set must pair
up or give up-rather, new individuals are always being introduced,
which has an effect on the overall mating success of different strategies
Oohnstone, 1997). The distribution of mate values we have used here is
uniform, but in the real world it is probably closer to a normal distribu-
tion. How will different distributions of mate values affect the perfor-
mance of different strategies? We have given everyone in the population
precisely the same impression of all the members of the opposite sex (all
females rank all males the same way, and vice versa), but this is not realis-
tic either: There will typically be some degree of agreement about who is
a good catch and who is not, but there will also be a large amount of
idiosyncracy in individual mate preferences. Some of these individual
preference differences will be based on purely aesthetic criteria, but some
will also have important fitness consequences (such as preferences for
mating with distant, but not close, relatives-see Bateson, 1983b).

This leads to another issue we must address: What are the most impor-
tant dimensions over which search algorithms such as these should be

compared? Here we have argued that fmding the absolute best individual
in a population is not necessarily the most adaptive goal, if the search
time, or mean chosen mate value, or distribution of chosen mate values,
can be improved upon. Furthermore, finding a mate at all. in the mutual
search case, could require selecting an individual with a mate value close
to one's own. But we need to support these claims. One way to approach
this problem is to create evolutionary simulations in which different algo-
rithms compete with each other for mates and offspring, and see which
types of algorithms win out over time. This approach, though, will only
succeed in telling us something about real evolved human (or animal)
behavior to the extent that we successfully incorporate the relevant eco-

logical details (of how mate value maps onto number of offspring, for in-
stance) into our model.

The ultimate goal is to look for evidence of particular strategies in the
actual evolved search behavior that humans and other animals use, as
others have done experimentally in settings including mate choice (e.g.,
Alatalo et al., 1988; Harrison & McCabe, 1996; Hey, 1982, 1987; Martin &
Moon, 1992; Rapoport & Tversky, 1970; Sethuraman et al., 1994). There
is always the concern that experimental situations may not tap into the
mental mechanisms used in real-world behavior, though, so it is also im-

portant to look for evidence of different search algorithms in the real ob-
served mate search behavior of people and other animals. Our simulations
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IIare intended to guide these investigations of real behavior, by indicating
what kinds of psychologically plausible, simple but effective search rules
we can reasonably expect, and so should look -for.

All of this is not to say that love has no place in mate choice, that it is
all down to percentages and aspiration levels and adaptive self-assess-
ments. Love can be a way of making any particular choice stick, lessening
or erasing any perceived mismatch between partners and making further
search seem blissfully unnecessary, even unthinkable. Love and other
emotions are important parts of behavioral mechanisms, rather than unique
undefinable forces that are orthogonal or even antagonistic to adaptive
behavior. But love can~d indeed may be designed to-obscure the op-
eration of the decision mechanisms in mate choice, so that the entire pro-
cess seems unfathomable when one is caught up in it. Choosing a mate
should not be a scientific affair. But we hope that scientific research can
be used to reveal some of the patterns in behavior underlying the way that
people search for, and find, each other.

14

ParentalInvestmentbySimple
DecisionRules

Jennifer Nerissa Davis
Peter M. Todd

There was an old woman who lived in a shoe. She had so
many children she didn't know what to do.

Traditional Nursery Rhyme

The old woman may not have had much to give her children, but some-
how she still had to figure out how to divide the broth that she did have
among them. How could she do this? How do parents decide how to di-
vide their time, money, and energy among their children? They could try
to perform some sort of complex analysis, estimating all the future costs
and benefits from now until their children become independent for all
possible current choices, if such a thing were realistically calculable. Al-
though the task of figuring out "optimal" solutions to these sorts of prob-
lems may be terribly complex or even impossible, given the large amount
of computation and prediction of uncertain future events required, this
does not mean parents must perform complex calculations to invest
Wisely. Instead they can rely on simple rules to guide their investment in
their children. In this chapter we present results of a study designed to
test just how successful such simple rules can be.

Parental Investment

Economists and behavioral ecologists have both addressed the problem of
how parents should divide investment among their children. The models
they have created, however, typically require information that is at best
difficult to calculate and at worst actually unknowable. For example.
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vide their time, money, and energy among their children? They could try 
to perform some sort of complex analysis, estimating all the future costs 
and benefits from now until their children become independent for all 
possible current choices, if such a thing were realistically calculable. Al­
though the task of figuring out "optimal" solutions to these sorts of prob­
lems may be terribly complex or even impossible, given the large amount 
of computation and prediction of uncertain future events required, this 
does not mean parents must perform complex calculations to invest 
wisely. Instead they can rely on simple rules to guide their investment in 
their children. In this chapter we present results of a study designed to 
test just how successful such simple rules can be. 

Parental Investment 

Economists and behavioral ecologists have both addressed the problem of 
how parents should divide investment among their children. The models 
they have created, however, typically require information that is at best 
difficult to calculate and at worst actually unknowable. For example, 
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