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Abstract

Whatsimplelearningrulescanallow agentdo cope
with changingenvironments?We testedwhethera
rule that neglectsbaseratesof eventsin the world
— somethingthat is usually consideredirrational
— could be as successfubls Bayesianinference—
the usual standardof rationality — in making cue-
basedpredictionsabout eventsin time-varying en-
vironments. We focusedon environmentsn which
baserateschangemore frequentlythan cue accura-
cies,aconditionthat,we argue,is commonin thereal
world. Five strategiegBayesiancueaccuracyalone,
adjustedcue accuracybaseratesalone,anda Least
Mean Squarelearning rule) were comparedacross
“lifetimes” of 10,000predictionsjn which baserates
and cue accuracyindependentlychangedevery 10,
50, 100,500, 1000, 0r 5000events. The resultscon-
firmedthatsimplestrategieshataretypically deemed
irrational (baserate neglectandits opposite,conser
vatism) canrival the typical standardof rationality,
Bayesiancombinationof information, by producing
ecologicallyrationaldecisionsin appropriatelyary-
ing environments.

1. Introduction

The bestpredictorof the futureis the past. But whataspects
of the pastshouldbe usedto predict the eventsof the fu-
ture? The informationthat could possiblybe usedincludes
the prevalenceof particularpastevents— thatis, their base
rates— and cuesthat more or lessreliably precededpast
events.Giventhis information,making predictionsbasedon
combining both sourcesaccordingto Bayesianupdatingis
usuallyconsideredo bethebest(mostrational,evenoptimal)
approachHowever,in awide arrayof predictiontasks,peo-
ple havebeenfoundto underweighior “neglect”) baserates
and overweightsituation-specificcuesrelative to Bayesian
prescriptions. As an exampleof a situationin which peo-
ple would be likely to neglectbaserates(Nisbett & Ross,
1980),considerchoosingbetweertwo carbrandsto buy, the
first of which hasa betterlong-termrepairrecord. But then
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you hearfrom afriend with thatbrandthattheir carjust died
on the highway— now which brandwould you be likely to
pick? Here, a single new piece of information should not
overwhelmthe evidenceof cumulativerepair records(base
rates)— butin similar sortsof experimentatasksit (often)
does. Therearemanymanipulationghat mitigatethis effect
(Koehler,1996), but it is difficult to eliminateit entirely in
manylaboratoryexperimentsindeed,in summingup awide
rangeof researchBar-Hillel (1980)statedhat“The genuine-
ness,the robustnessandthe generalityof the base-ratdal-
lacy [i.e., base rate neglecte matters of established fact.”
Why do people(sometimesheglecthaseratesin thisway?
More generallywhy do people(aswell asotherspeciespys-
tematicallymake decisionslike thesethat are typically de-
scribedas“irrational”? A large literatureexploresthe con-
ditions underwhich “reasoningerrors” canbe elicited (e.g.,
Kahneman, Slovic& Tversky, 1982), whilean opposing tra-
dition demonstrateBow sucherrorscanbeeliminatedor sub-
stantially reduced(e.g., Gigerenzer,1991). One view that
strivesto explainboth setsof findings positsthat humande-
cision mechanismare designedo work with specificstruc-
turesof informationin the environmentWhenthesemecha-
nismsare usedin inappropriateenvironmentsjrrational de-
cisions can result. But when they are appliedto decision
problemsin appropriately-structurednvironmentshumans
can make decisionswith ecological rationality — that is,
appropriatechoicesthat resultfrom a matchbetweena de-
cision mechanismand the environmentin which it is ap-
plied (Gigerenzer& Todd, 1999). In this paper,we argue
thatlearninganddecisionmechanismshatproducea pattern
of behaviorusually held to be irrational, baserate neglect,
canactuallybe ecologicallyrationalby producingappropri-
atedecisionsn environmentsvith appropriatestructure.We
demonstratehis matchbetweendecisionstrategiesand en-
vironmentsthroughMonte Carlo simulations. Furthermore,
we arguethatthe environmenstructuremostsuitedfor base-
rate-neglectingnechanismss actually commonin the real
world. Thus,thefactthatpeoplecanbe shownto inappropri-
ately neglectbaseratesin laboratoryexperimentsnay be an
indicationthat the experimentaketupsviolate people’srea-
sonableexpectationgaboutenvironmenstructureratherthan
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demonstrations of deep-seatedtionality.

As anexampleof asituationin whichbaserateneglectmay
be reasonableGigerenzer(1991) introduceda variation on
the dying-carproblemthatcastssomedoubton the universal
applicability of the traditional Bayesianapproach.Consider
decidingwhetherto let your child play inthelocal river or in
the nearbyforest. Crocodileshavenot beenseenin theriver
for the pastseveralyears— establishinga safebaseratefor
choosingthe river over somewhatisky treeclimbing — but
yesterdayoneattackedsomebodyat the river's edge.Where
shouldyou let your child play today? In this case,it would
seemthe wiser strategyto emphasizehe recentsingle case
and discount (or, better, discartthe overall base rate.

The crocodile problemillustratesthe importanceof con-
sidering decision the context ofthe dynamic environment
in which theyarelikely to occur. For the car-buyerthe base
ratesof brandreliability may be stableover the courseof a
few years,anda singlebreakdownmight be merelyan erro-
neouscue. For the parent,however,it is clearthatthe base
ratesof crocodileinfestationcanvary from yearto year,while
arecentreportof a crocodileattackremainsareliablecueto
the presensituation. The cueof yesterday'srocodileattack
may servenot only its traditionalrole in the likelihood ratio
of Bayes’'formula, but may alsoindicatethatthe prior prob-
abilities — the base rates- have changed.

In light of such considerations,it has been proposed
(Gigerenzer1991;Goodie& Fantino,1999)thatin environ-
mentswherebaserateschangemore than cue accuracies,
neglectingbaserateswhen making predictionsmay not im-
pair performanceto any greatextent. Thus, observations
of “irrational” baserate neglectmay indicatean otherwise-
ecologicallyrationalmechanisms beingusedin anenviron-
mentfor which it is notintended. In this paperwe testthis
idea empirically, comparingin simulationthe performance
of 5 predictionstrategiesierivedfrom the literature,includ-
ing partialandcompletebaserate neglect,Bayesianintegra-
tion, baserateusealoneandconnectionistearning,in arange
of environmentswith varying cueaccuracieandeventbase
rates.

2. Past work on ecologically rational learning

The questionof which particularlearningstrategiesareeco-
logicalrationalin whichenvironmentss closelyrelatedcto the
questionof when(i.e., in whatenvironmentatircumstances)
different forms of learningwill evolve. While thereis wide
agreementhatrapidly changingenvironmentsill be favor-
ableto theevolutionof learningin generale.g.,Belew,1990;
Miller & Todd, 1990; Stephens1991),thereis relatively lit-
tle explorationto dateof specificenvironmenstructureghat
favor the evolution of particulartypesof learning. Todd &
Miller (1991)evolvedsimplerecurrentneuralnetworksthat
exhibitedthe ability to sensitizeand habituatein “clumpy”
environmentsvhereimportantstimuli were encounteredn

1We usethe term cue accuracyto meanBayesianlikelihoods, in other
words p(cue—outcome).

(more or lessnoisy) patchesover time. Thusin effect the
networksexperienced¢hangingbaserates but therewereno
explicit cues(otherthanthe presencer absencef the stim-
uli) to usealongwith baserates,greatly limiting the range
of possiblelearningstrategieghat could be employed.Here
we extendthis early work by explicitly comparinga set of
clearly defined(ratherthanmessilyevolved)learningstrate-
giesdeployedin a wider rangeof environmentstructureso
determinewhenthe two fit, andthusproduceecologicalra-
tionality.

McKenzie (1994)took a similar directapproactby simu-
lating intuitive strategiesand moretraditionalrationalmod-
els makingdecisionsin a broadrangeof environments.He
foundhigh correlationsn performancéetweertheintuitive
strategiesand the rational modelsin many instances jndi-
catingthe ecologicalrationality of the former. (Gigerenzer
& Hoffrage, 1995, extendedthe catalog of intuitive near-
andnon-Bayesiarstrategieshatpeopleusewhenfacedwith
Bayesiardecisiontasks.)Our work in this paperexpandson
McKenzie'seffortsby exploringtheimportantcaseof strate-
gies tuned to changing, rathigran fixed, environments.

3. Simulating cue and outcome learning

To testthe efficacyof differentpredictionstrategiesn differ-
ent settings,we createda simulationthat can be viewed as
comparingthe behaviorof organismsfollowing variouspre-
diction strategiesn particularenvironments.The “lifetime”
of eachsimulatedorganismconsistedf 10,0000ccasion®n
which eitherof two events,F, or E1, couldoccur,preceded
in eachcaseby oneof two cues(or two statesof onecue,e.g.
absenbr present)(, or C;. Theorganismusedits particular
strategyto predictthe eventafter“perceiving” the preceding
cue,andthe succes®f eachstrategywasmeasure@stheav-
erage number of events correctisedicted over 50 lifetimes.

3.1 The environments

To createenvironmentsin which eventbaseratesand cue
accuraciesanvary overtime, we specifiedtwo parameters,
the baserate changeinterval (BRCI) andthe cueaccuracy
changenterval(C ACT). Eachparametewasassignednter-
vals of 10, 50, 100, 500, 1000, or 5000 events,yielding 36
environments.For eachorganism’slifetime, an initial base
rateandcueaccuracywerechoserrandomlyfrom a uniform
distributionbetween0.0 and1.0. Then,after BRC'I events,
the baseratewaschangedo a new value chosenat random
from the sameinterval, and after CACI events,a new cue
accuracywassimilarly selected.Sofor examplean environ-
mentcharacterizedby a BRC'I of 50 anda C ACT of 1000
hasbaseratesthat changerapidly while cue accuraciese-
mainrelatively stable— the kind of situationin which base
rate neglect might be adaptive.

The currentbaserate and cue accuracyvaluescontrolled
the generatiorof the eventsandcuesan organismwould ex-
perienceon a giventrial. First, eventFE, or £, wasselected



randomlywith a probability distribution definedby the cur

rent baserate. For example,if the baserate were .7, Ey

would be chosenwith 30% probability and E; with 70%
probability. Secondpasednthe selectedevent,a cuewould

be generatechccordingto the cue accuracy. (Note that in

thesesimulations,we makethe simplifying assumptiorthat
p(Co|Ep) = p(C1|En).) Forexamplejf E; waschoserand
the cue accuracywas .4, then C; would be generatedvith

40% probability, and otherwiseCy would be generated.In

this way, 50 lifetime sequencesf 10,000 cuesand events
were generatedor eachof the 36 BRCI/C ACI-specified
environmentsEachstrategydescribedn thenextsectionwas
tested on the same set®d sequences per environment.

3.2 The strategies

We comparedthe performanceof five strategiesin two
classes:four that kept track of cue-eventpairsin a decay-
ing memorytable,andonethatlearnedconnectiorstrengths
betweercuesandevents.Eachstrategycomputedhe proba-
bility p of eventF; giventheobservedtue(Cy or C) andits
knowledgeof the past,andthenpredictedF; if p > 0.5 and

3.2.1 Contingency table-based strategies

Four of our strategiesare basedon memoryfor the frequen-
cies of cue-eventairingsasrepresentedn the 2 x 2 table
shownin Figure 1. The moststraightforwardapplicationof
this approachwould imply a full and perfectmemoryof M
events,with completeamnesiafor all observationsM + 1
eventsagoandearlier. To useamorerealisticmodelof mem-
ory thatincorporateghe assumptiorthat old informationis
lessrelevantthanrecentinformation,we employeda tablein
which storedeventsdecayexponentiallyasfurthereventsoc-
cur. Forinstancegntry a in the tableis updatedasfollows:
a;+1 = f - a; + 1 if thecue-evenpair Cy, Ey wasjustseen,
anda; 11 = f - a; otherwisewhere f is the decayrate pa-
rameter(0 < f < 1). In thisway, a, b, ¢, andd maintaina
weightedcountof thepastevent-cugairsseenwith themost
recentobservationgyetting the mostweight. To paraphrase
DouglasMacArthur?, old eventsneverdepartfrom memory;
they just fade away. Eachof the four table-basedtrategies
we investigatedhencomputedts predictionon the basisof
thevaluesa, b, ¢, andd, asdescribedelowandsummarized
in Tablel. We variedthe memorydecayrate f, butto allow
memorylengthto be comparednoredirectly to ratesof en-
vironmentchangewe give our resultsin termsof “half-life,”
which is the numberof trials it takesa given event-cuepair
enterednto memoryinitially with a strengthof 1.0to decay
to a strength of 0.5 (half-lifez —1/ log, f).

1. Bayesian. This strategyconsistsof Bayesianintegra-
tion of the baseratesandcueaccuracydefinedasthe condi-
tional probabilitiesof £, giventhe observectue. This strat-

2Address to a Joint Meeting of Congress, April 19, 1951.
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Figure1: The structureof the memoryfor strategiesl to 4. A de-
cayingmemorytracewaskeptfor the four cellsa, b, ¢, andd, and
different strategies used some or all of these values.

egy employsall four piecesof availableinformation,andis
usually consideredhe benchmarkfor rationality in this do-
main (Castellan, 1977).

2. Cueaccuracyalone(baserate neglect). This strategy
considersonly the probability that the cue matchesthe up-
comingevent.By neglectingbaserateinformation,this strat-
egy shouldbe outperformedby the Bayesianstrategyl in
environmentsvherebaseratesarestableanduseful,but may
gainan advantage when basstes change quickly.

3. Adjustedcue accuracy. Absolutebaserate neglectas
embodiedn strategy? hasseldombeenreportedn theliter-
ature(Koehler,1996; but seeGigerenze®& Hoffrage, 1995,
for instances)Ratherhumansandotheranimalsseento in-
corporatebaserate information partially in their decisions,
asis modeledby this strategy. The cue-basedrobability
usedin strategy? was adjustedby a small amount(5 per
centagepoints)in thedirectionprescribedy thecurrentbase
rate. This strategyis consistentwith the substantiabut in-
completebaserate neglectobservecby Goodieand Fantino
(1995; 1999).

4. Baseratesalone. The complemento usingcueaccu-
racy exclusivelyis using baseratesexclusively. Wherethe
formerneglectdbaseratesentirely, this strategyneglectue-
basedinformation entirely, employing only the probability
with which eacheventoccurs. This strategyis similar to an
extremeform of conservatisnin decisionmaking(Edwards,
1982). While conservatisnhasbeendescribedaserroneous
reasoningthis strategyshouldperformwell whencueaccu-
racy changes frequently.

3.2.2 The connectionist learning strategy

Thefifth strategyarisesfrom a connectionistodelof cate-
gorizationthathasbeenappliedto baseratephenomenarhis
strategydispensesvith directly countedmemoriesof events
andinsteadearnscontinuouslyshifting associatiorstrengths
betweenexperiencecuesandevents. A setof input nodes
receivesactivationaccordingto the currentcue,andan out-
put node makesan eventprediction basedon the summed
input activationweightedby the learnedconnectionweights
betweeninput and outputnodes. Learningtakesplaceafter



eachcue-evenpair is seenadjustingthe connectionweights
to minimize the difference betweenpredictionsand actual
events.

5. LeastMean SquaregLMS) learningrule. Gluck and
Bower (1988) trained peopleto diagnosefictitious diseases
from symptomsin a situationanalogougo the cue-to-event
predictionwe considerhere. They found baserate neglect
that could be modeledwith a simple neuralnetworktrained
accordingo theLMS learningrule. Our strategyuseda simi-
larly trainednetworkwith threeinputnodes:oneactivatedoy
Cy, oneby C1, anda third thatwasalwaysactivated simu-
lating backgroundatues.We followed Gluck andBower’sfor-
mulasfor updatingactivationweightsandconvertingthemto
response probabilities.

‘ prediction after Cy prediction after C;
. d
1. Bayesian R(1- a R(l1-——
== =550
. + +
2. Cue R(l—a d) R(a d)
accuracy M M
; + +
3 Adusied pq @t oo arb R 05 i “Fhss
cue accuracy M M M M
a+d . atb a+d oa+b
R(1-——-.05) if ——>35 R -.05 it ——<5
c+d c+d
4. Base rates R( M ) R( M )

Tablel: Formulador calculatingthepredictionsof thecontingency-
table-basedtrategieg1-4) from theinformationstoredin the2 x 2
tableshownin Figurel. R(z) denoteghe function of roundinga
numberto the nearesinteger. Becauseall valuesrepresentedhere
areboundedby 0 and1, all roundedvaluesare0 or 1, corresponding
to predictingEy or E4, respectivelySomevaluesto beroundedare
subtractedrom 1 becausefor example,the cue accuracystrategy
shouldpredictEy whena + d is closeto 1, notwhenit is closeto 0.

3.3 Predictions and Questions

Theseb strategiesverecomparedy simulatingtheir predic-
tions over 50 lifetimes of 10,000cue-evenipairsin eachof
36 differentenvironmentsThe mostimmediatequestionad-
dressedby thiscomparisorns whethemaserateneglect(strat-
egy 2) can successfullycompetewith Bayesianintegration
(strategyl) whenbaserateschangemorefrequentlythancue
accuracy. Of course,if the Bayesianstrategyhasaccurate
knowledgeof the baseratesandcueaccuraciesn the current
environmengateverymomentjt will haveanadvantagén us-
ing this knowledge But suchknowledgedoesnot comefrom
a guidebook— it mustbe acquiredthroughexperience.f
baserateschangeso frequentlythatthey areoften estimated
incorrectly,thenastrategythatusegheseestimatesnayhave

little advantageover a strategythat ignoresbaserate infor-
mation. We expectedhis to be the casewhenthe Bayesian
strategyattemptedo incorporaterapidly changingoaserates.
Particularlywhencueaccuracychangedeldomwe expected
baserateneglectstrategie$2 and3) to performaboutaswell
as Bayesian integration (strategy 1).

We correspondinglexpectedhat “cue-accuracyneglect”
(strategy4) would rival Bayesianintegration(strategyl) in
environmentwith rapidly-shiftingcueaccuraciesandstable
baserates. Finally, we were not sure how a connectionist
strategywould fare in this comparisonjn principle, it could
learn and use both baserate and cue accuracyinformation,
like Bayesianintegration. But becausesuch modelshave
beenusedto predict(correctly)baserateneglectin compara-
ble situations we thoughtstrategy5 might behavesimilarly
to strategies 2 and 3.

4. Comparing rule performance in different
environments

The prediction performanceof all 5 strategies®, using a
memory half-life of 100 cue-eventpairs for strategiesl-4,
is shownin Figure2. Averagedacrossall 36 environments,
the Bayesiarintegrationstrategyprovedthe mostsuccessful,
making correctpredictionsfor about73% of the cue-event
pairs (seeFigure 2, left panel). The adjustedcue accuracy
strategy(3), which mustkeeptrackof threeof thecellsin the
2 x 2 table,combinedthis informationin a slightly lessef-
fectivemanneryeachingabout69%correctpredictions.This
wasfollowed closelyby the LMS strategywith 68%. Thetwo
simpleststrategiesysingonly two of thecellsin the2 x 2 ta-
ble (cue accuraciesor baseratesalone), eachscoredabout
66% correct overall.

However,whenenvironmentswvith differentstructuresare
examinedseparately,the ordering of successfulstrategies
changessystematicallyand dramatically. First, consider
thoseenvironmentsvherebaseratesaremuchlessstablethan
cueaccuraciesdefinedasthosewherethe interval between
cueaccuracychangess atleasttentimesaslong astheinter-
val betweerbaseratechangeC ACI > 10 - BRCI). Ten
of the 36 environmentshavethis structure. Averagedacross
theseenvironmentgseeFigure2, middlepanel) Bayesiarin-
tegrationstill makescorrectpredictionsmostoften, evenex-
ploiting this environmentstructureto improve performance
slightly to 74%. However, baserate neglectnow nearly
matcheBayesiarmperformancewith 72% correct.Including
the baserate adjustment(strategy3) improvesperformance
by anothemercentageoint (73% correct). The LMS rule’s
performances reducedby the rapidly changingbaserates
to 65%. Finally, strategy4, in relying solely on baserates,

SWe performeda similar comparisonacrossthesethree environment
structuredor two additionaltypesof strategiesa setcorrespondingo strate-
gies1-4thatusedanexactcountof cue-evenpairsin asliding memorywin-
dowratherthanadecayingnmemory;andasetcorrespondingo strategied-5
that predictedoutcomeeventsusing probability matchingratherthanexclu-
sively choosingthe morelikely event. In both casesthe patternsof results
closely resembled those reported here.
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Figure2: The performancef thefive predictionstrategiesaveragedcrossall 36 environmentgleft panel),acrosshoseenvironmentsvith
stablecueaccuraciesndrapidly varying baserates(middle panel),andacrossenvironmentsith stablebaseratesandrapidly varying cue

accuracies (right panel).

not surprisinglydoesworst of all, butis still ableto extract
enoughinformationto makecorrectpredictions59% of the
time.

In environmentsvherecueaccuraciesremuchlessstable
thanbaserates(BRCI > 10 - CACT; Figure2, right panel),
we find a mirror image of theseresults. Baseratesalone
(strategyd) now nearlymatchesBayesiamperformance72%
vs. 74%),while baserateneglectperformsworst(59%). Par
tial baserateneglect(strategy3) achievesnintermediateac-
curacy(66%). The LMS rule alsobenefitsfrom stablebase
rates (improving to 70%).

Becauseour primary questionwaswhenbaserate neglect
would approachthe accuracyof the Bayesianstrategy,the
differencein performancebetweenthesetwo strategiesis
portrayedacrossall environmentsn Figure 3. When cue
accuracieshangedslowly and baserateschangedrapidly
(front left corner),baserateneglectwasaboutasaccurateas
Bayesianintegration. As cue accuracieslsochangednore
and more rapidly (moving along the front edgetoward the
right), the two strategiescontinuedto perform similarly, in
part becauseall strategiesfared lesswell in environments
where both cue accuraciesand baserateschangedrapidly
(frontright corner).Only whenbaseratesbecamanuchmore
stable(BRC1 > 500) did alargedifferencebetweerthetwo
strategiesappearparticularlywhencueaccuraciesvereless
reliable than base ratésear right corner).

In comparinghe LMS learningrule with the contingency-
tablestrategiesthreeunpredictedut robusteffectsemerged.

First, the LMS rule did a betterjob of capitalizingon stable
baseratesthanon stablecueaccuraciegseeFigure2, differ-
encebetweerright andmiddle panelsyespectively) Second,
this strategyperformedbetterthan any other strategyin the
mostvariableenvironment{ BRCI,CACI = 50; seeFig-
ure4). Third, however,t lagsbehindotherstrategiesn envi-
ronmentof frequentbaseratechangavherebaserateneglect
doeswell (Figure2, middle panel),perhapshecausét does
relatively poorly attakingadvantag®f stablecueaccuracies.
Thisis atfirst surprisingin view of GluckandBower’s(1988;
seealsoShanks1990)demonstratiornthattheir modelusing
the LMS rule producesdaserate neglect. This paradoxmay
be clarified by noting the distinction betweenbaserate ne-
glectasanempiricalphenomenonasthetermis mostcom-
monly used,and baserate neglectasa decisionprocessas
was employedhere— the LMS rule canproducebaserate
neglectphenomenan some circumstancesbut our results
makeit clearthatit doessoin a way that differs from the
cue-accuracy strategy (2).

4.1 Effects of memory length

Do these effects hold with other assumptionsabout the
length of memoryfor cue-eventpairs? We testedthe ro-
bustnessof our resultsto changesin memory length by
comparing the performanceof strategies1-4 with half-
lives of 20, 50, 100, 200, 500, 1000, 2000, and 5000
events.We usedfour environmentombiningslow andfast
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Figure 3: Comparisorof the performanceof Bayesianintegration
andbaserateneglectacrossall 36 environmentspecifiedoy BRC'T

andCACI. Thez-axisshowsthe differencein numberof correct
predictiongoutof 10,000predictionamade)betweerthetwo strate-
gies (Bayes minus base rate neglect).

changes:BRCI/CACI = 1000/1000, 1000/50, 50/1000,
and 50/50.The results appear in Figude

Memorylengthhasa strongeffecton overallperformance:
Longer memory tracesalmost always impair performance.
This is becausdonger memoriesblur currentand outdated
baserate and cue accuracyinformation. Furthermore the
main patternsseen before remain robust acrossdifferent
memorylengths:Whenbaserateschangemuchmorerapidly
thancueaccurac BRCI = 50, CACI = 1000), baserate
neglect(strategy?) performsnearlyaswell asBayesiarinte-
gration(strategyl) for all but the shortestmemories. Like-
wise, when cue accuracychangesmore rapidly than base
rates(BRC1 = 1000, CACI = 50), baserateuse(strategy
4) performsnearlyaswell asBayesiarintegrationfor all but
the shortesinemories Becauseshortmemorylengthsdo not
seemlikely (in light of, e.g.,Goodie& Fantino’s1999learn-
ing studies)theability of simplestrategieso matchBayesian
performancen appropriateenvironmentsappearsobustun-
der reasonable assumptiasfamemory length.

5. Forms of environmental variation

Overall, theseresultsshowthat simple predictive strategies
matchedto environmentswith a specific structurecanrival
“optimal” modelsin predictionperformance.We compared
the performanceof a variety of decisionstrategiesacross
a rangeof environmentsand found that althoughsomeof
thesestrategiewiolatetraditionalnormsof rationality,for in-
stanceby ignoringor underweightindaserates theyproduce
gooddecisionsin environmentgo which they are matched,
andtherebyyield ecologicalrationality (Gigerenzek Todd,
1999).

But do baserateschangemore often than cue accuracies

in general2\Ve believetheydo, becausdaseratesof natural
eventsareusuallycausedy complexandinteractingfactors,
while goodcuesoftenbeara relatively simple,andtherefore
stablecausalrelationto the eventsthey predict. As a simple
example considerthe problemof predictingpicnic weather.
The baserateof rain on a particulardayin a particularplace
is complexly determinedby a numberof time-varyingfac-
tors that are often difficult to evaluate,suchasapproaching
fronts, humidity, microclimate,andtime of year,makingac-
curateassessmerdf the prior probability difficult andtime-
consuming.However,thesemultifariouscausalariablesof-
tencombineto createnotonly rain, butalsorain clouds.Dark
cloudsare a good cue to impendingrain, and becausdhey
aremostly causedy the sameforces,thelikelihood of storm
cloudswhenrain is imminentis expectedo stay constant,
evenasthe baseratesof bothrain andrain cloudsmay vary
widely. Similarly, incidenceof measlesnay vary from time
to time, or from onelocale to another,but red spotsare an
accurate cue in each situatidBirth rates are different in dif-
ferentcountriesandin differentyears but pregnancyestsre-
mainequallyreliable. Anotherway of thinking of thisis that
whenthingsin theworld a clumpedin spaceor time, organ-
ismswill experiencechangingbaseratesof thosethingsas
they movethroughspaceor time. Justhow clumpedvarious
thingsarecomparedo how stable(overspaceandtime) their
cuesarewill determinewhenbaseratesand cueaccuracies
are informative.

In contrastwe canaskwhatenvironment&xistwherecue
accuracievary morerapidly thanbaserates. In suchenvi-
ronmentswe could expectpeopleto rely relatively moreon
baseateinformation,andthusnotshow(strong)baseratene-
glect. Situationsin which cuesaresocially constructedand
so may vary rapidly, are one candidatefor rapidly varying
cueaccuraciesgspeciallywhenthereareconflictsof interest
involved betweersignallingandreceivingindividuals. Simi-
larly, whenenteringanewarbitrarily constructedituation(as
socialenvironmentsanbe),cueaccuraciesnay be expected
to change more than basses.

GoodieandFantino(1995,1996)foundevidencethatpeo-
ple may expectsuchchangesn cue accuracybut not base
rates, when encounteringnovel situations. In two setsof
experimentghey createdconditionsof direct experiencan
which, unlike in paststudies,participantswere not required
to procesr comprehendny statisticalinformation,anddid
not haveto report any quantitativejudgments. First, they
askedparticipantsto predicteventsconsistingof the occur
renceof blue or greenrectangleson the basisof cuesthat
wereeitherotherblueor greenrectanglegGoodie& Fantino,
1995) or the words “blue” or “green” (Goodie & Fantino,
1996,experimen®). In bothcasesparticipantsshowedstan-
dardbaserateneglect,behavingasthoughthey expectedhe
cuesto be stable, accuratepredictorswhile the baserates
could be variableandhencenot useful. This is understand-
ablein light of the factsthat,on the onehand,we commonly
matchcolorsand matchnamesto colors (thus experiencing



reliablecueaccuracies)andon the otherhandwe seesome
colorsmoreoftenthanothersin differentsituations(thusex-

periencingvariablebaserates). Secondwhenthe cueswere
insteadunrelatedto the events,suchasvertical or horizon-
tal lines precedinghe blue or greenrectanglesbaseratene-

glectdisappeare@ntirely (Goodie& Fantino,1996,Experi-

mentl), indicatingthatparticipantsverenow usingastrategy
consistenwith the belief thatboth eventbaseratesandcues
could be important in thisovel prediction setting'

6. Implications and conclusions

While theeventsandcue-eventssociationsf one’spastare
animportantguideto the future, knowledgeof the pastcan
prove untrustworthyif it springsfrom processeshatare no
longerin place. And in the real world, changeis constant.
Thechangingseasonghe shifting populationof interacting
predatorandprey (or parasiteandhost)speciesthe newsur
roundingsencounteredby migratingcreaturesall contribute
to reducing the samenesbpast and future (Potts, 1996).

With the presensimulationswe havedemonstratethata
supposedlynormative,Bayesianstrategyis often little more
successfulthan less “rational” strategiesat predicting the
eventsin particularchangingenvironments. Thus, the fact
that peoplecan be madeto act “irrationally” in underusing
baserates(or converselybeing too conservativein chang-
ing them)appeardo say more aboutthe environmentstruc-
ture that peopleexpect(whethervia learningor evolution)
to encounterthan aboutthe purportedshortcomingsof our
cognitiveabilities. While thereareseveralextensiongo this
work that mustbe exploredbeforedefinitive statementsan
be made(e.g.,eliminatingthe constraintof equalaccuracies
for bothcues,usingmoreextremebaseratesandcueaccura-
cies— possiblybimodallydistributed— in theenvironments,
and testingthe efficacy of a wider rangeof strategies)our
resultshereindicatethat observechumanbehaviorin many
learningsituationscan be ecologicallyrational, ratherthan
irrational.

In additionto the near-Bayesiaperformancef strategies
that neglectbaseratesunder presumablycommonshifting
environmentaktonditions,two more of our findingsbearon
guestionsof standard®f rationality. Firstis the finding that
longer memoriesleadto poorerperformance.lt is perhaps
surprisingwhen more information (here storedin memory)
resultsin reducedperformanceput such“less is more” ef-
fectsmaynotbesouncommor{e.g.,Goldstein& Gigerenzer,
1999). This instancepresumablyarisesfrom a compromised
ability to respond rapidlyo changes in the environment.

Theothernotableoutcomels the performancef the LMS
rule relative to the Bayesianstrategy: sometimesbetter,

4Furthermorewhenparticipantsin the familiar matchingsituationwere
allowedto acquirea greatamountof experienceaboutthe particularexperi-
mentalenvironment— 1600predictions— they beganby neglectingevent
baseratesasindicatedabove.Overtime, though their performancehanged
in away thatindicatedthe participantshadlearnedthatwithin this contexta
newandstablesetof baseratesheldandhencea strategyincorporatingooth
base rates and cues could agaénused.

sometimesworse. Both LMS learning (Widrow & Hoff,
1960)andBayesiardecisionmaking(Tversky& Kahneman,
1982) are widely proclaimedas optimal — but only under
certainconditions.Indeedoutsidethoseconditions,asin the
environmentsexploredhere, the two strategiesdo different
things. How then can we choosean appropriatenorm of
rationality to useas a benchmarkwhen judging the perfor
manceof differencedecisionmechanismgandof humande-
cisionmaking;seeHertwig & Todd,2000)?Onecouldargue
thatwhicheverapproachperformsbetteris the truly rational
model. But the fact that Bayesianintegrationdoesbetterin
someenvironmentswhile the LMS rule doesbetterin others
showsthatnorms,like the decisionmechanismshemselves,
mustbechoserrelativeto aparticularenvironmentThus,the
structureof the environmentprovesto be the final arbiter of
ecological rationality.
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