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Abstract 

What simple learning rules can allow agents to cope 
with changing environments? We tested whether a 
rule that neglects base rates of events in the world 
— something that is usually considered irrational 
— could be as successful as Bayesian inference — 
the usual standard of rationality — in making cue-
based predictions about events in time-varying en-
vironments. We focused on environments in which 
base rates change more frequently than cue accura-
cies, a condition that, we argue, is common in the real 
world. Five strategies (Bayesian, cue accuracy alone, 
adjusted cue accuracy, base rates alone, and a Least 
Mean Square learning rule) were compared across 
“lifetimes” of 10,000 predictions, in which base rates 
and cue accuracy independently changed every 10, 
50, 100, 500, 1000, or 5000 events. The results con-
firmed that simple strategies that are typically deemed 
irrational (base rate neglect and its opposite, conser-
vatism) can rival the typical standard of rationality, 
Bayesian combination of information, by producing 
ecologically rational decisions in appropriately vary-
ing environments. 

1. Introduction 

The best predictor of the future is the past. But what aspects 
of the past should be used to predict the events of the fu-
ture? The information that could possibly be used includes 
the prevalence of particular past events — that is, their base 
rates — and cues that more or less reliably preceded past 
events. Given this information, making predictions based on 
combining both sources according to Bayesian updating is 
usually considered to be the best (most rational, even optimal) 
approach. However, in a wide array of prediction tasks, peo-
ple have been found to underweight (or “neglect”) base rates 
and overweight situation-specific cues relative to Bayesian 
prescriptions. As an example of a situation in which peo-
ple would be likely to neglect base rates (Nisbett & Ross, 
1980), consider choosing between two car brands to buy, the 
first of which has a better long-term repair record. But then 

you hear from a friend with that brand that their car just died 
on the highway — now which brand would you be likely to 
pick? Here, a single new piece of information should not 
overwhelm the evidence of cumulative repair records (base 
rates) — but in similar sorts of experimental tasks it (often) 
does. There are many manipulations that mitigate this effect 
(Koehler, 1996), but it is difficult to eliminate it entirely in 
many laboratory experiments. Indeed, in summing up a wide 
range of research, Bar-Hillel (1980) stated that “The genuine-
ness, the robustness, and the generality of the base-rate fal-
lacy [i.e., base rate neglect] are matters of established fact.” 

Why do people (sometimes) neglect base rates in this way? 
More generally, why do people (as well as other species) sys-
tematically make decisions like these that are typically de-
scribed as “irrational”? A large literature explores the con-
ditions under which “reasoning errors” can be elicited (e.g., 
Kahneman, Slovic, & Tversky, 1982), while an opposing tra-
dition demonstrates how such errors can be eliminated or sub-
stantially reduced (e.g., Gigerenzer, 1991). One view that 
strives to explain both sets of findings posits that human de-
cision mechanisms are designed to work with specific struc-
tures of information in the environment. When these mecha-
nisms are used in inappropriate environments, irrational de-
cisions can result. But when they are applied to decision 
problems in appropriately-structured environments, humans 
can make decisions with ecological rationality — that is, 
appropriate choices that result from a match between a de-
cision mechanism and the environment in which it is ap-
plied (Gigerenzer & Todd, 1999). In this paper, we argue 
that learning and decision mechanisms that produce a pattern 
of behavior usually held to be irrational, base rate neglect, 
can actually be ecologically rational by producing appropri-
ate decisions in environments with appropriate structure. We 
demonstrate this match between decision strategies and en-
vironments through Monte Carlo simulations. Furthermore, 
we argue that the environment structure most suited for base-
rate-neglecting mechanisms is actually common in the real 
world. Thus, the fact that people can be shown to inappropri-
ately neglect base rates in laboratory experiments may be an 
indication that the experimental setups violate people’s rea-
sonable expectations about environment structure, rather than 
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demonstrations of deep-seated irrationality. 
As an example of a situation in which base rate neglect may 

be reasonable, Gigerenzer (1991) introduced a variation on 
the dying-car problem that casts some doubt on the universal 
applicability of the traditional Bayesian approach. Consider 
deciding whether to let your child play in the local river or in 
the nearby forest. Crocodiles have not been seen in the river 
for the past several years — establishing a safe base rate for 
choosing the river over somewhat risky tree climbing — but 
yesterday one attacked somebody at the river’s edge. Where 
should you let your child play today? In this case, it would 
seem the wiser strategy to emphasize the recent single case 
and discount (or, better, discard) the overall base rate. 

The crocodile problem illustrates the importance of con-
sidering decisions in the context of the dynamic environment 
in which they are likely to occur. For the car-buyer, the base 
rates of brand reliability may be stable over the course of a 
few years, and a single breakdown might be merely an erro-
neous cue. For the parent, however, it is clear that the base 
rates of crocodile infestation can vary from year to year, while 
a recent report of a crocodile attack remains a reliable cue to 
the present situation. The cue of yesterday’s crocodile attack 
may serve not only its traditional role in the likelihood ratio 
of Bayes’ formula, but may also indicate that the prior prob-
abilities — the base rates — have changed. 

In light of such considerations, it has been proposed 
(Gigerenzer, 1991; Goodie & Fantino, 1999) that in environ-
ments where base rates change more than cue accuracies 1 , 
neglecting base rates when making predictions may not im-
pair performance to any great extent. Thus, observations 
of “irrational” base rate neglect may indicate an otherwise-
ecologically rational mechanism is being used in an environ-
ment for which it is not intended. In this paper we test this 
idea empirically, comparing in simulation the performance 
of 5 prediction strategies derived from the literature, includ-
ing partial and complete base rate neglect, Bayesian integra-
tion, base rate use alone and connectionist learning, in a range 
of environments with varying cue accuracies and event base 
rates. 

2. Past work on ecologically rational learning 

The question of which particular learning strategies are eco-
logical rational in which environments is closely related to the 
question of when (i.e., in what environmental circumstances) 
different forms of learning will evolve. While there is wide 
agreement that rapidly changing environments will be favor-
able to the evolution of learning in general (e.g., Belew, 1990; 
Miller & Todd, 1990; Stephens, 1991), there is relatively lit-
tle exploration to date of specific environment structures that 
favor the evolution of particular types of learning. Todd & 
Miller (1991) evolved simple recurrent neural networks that 
exhibited the ability to sensitize and habituate in “clumpy” 
environments where important stimuli were encountered in 

1We use the term cue accuracy to mean Bayesian likelihoods, in other 
words p(cue—outcome). 

(more or less noisy) patches over time. Thus in effect the 
networks experienced changing base rates, but there were no 
explicit cues (other than the presence or absence of the stim-
uli) to use along with base rates, greatly limiting the range 
of possible learning strategies that could be employed. Here 
we extend this early work by explicitly comparing a set of 
clearly defined (rather than messily evolved) learning strate-
gies deployed in a wider range of environment structures to 
determine when the two fit, and thus produce ecological ra-
tionality. 

McKenzie (1994) took a similar direct approach by simu-
lating intuitive strategies and more traditional rational mod-
els making decisions in a broad range of environments. He 
found high correlations in performance between the intuitive 
strategies and the rational models in many instances, indi-
cating the ecological rationality of the former. (Gigerenzer 
& Hoffrage, 1995, extended the catalog of intuitive near-
and non-Bayesian strategies that people use when faced with 
Bayesian decision tasks.) Our work in this paper expands on 
McKenzie’s efforts by exploring the important case of strate-
gies tuned to changing, rather than fixed, environments. 

3. Simulating cue and outcome learning 

To test the efficacy of different prediction strategies in differ-
ent settings, we created a simulation that can be viewed as 
comparing the behavior of organisms following various pre-
diction strategies in particular environments. The “lifetime” 
of each simulated organism consisted of 10,000 occasions on 
which either of two events, E0 or E1, could occur, preceded 
in each case by one of two cues (or two states of one cue, e.g. 
absent or present), C0 or C1. The organism used its particular 
strategy to predict the event after “perceiving” the preceding 
cue, and the success of each strategy was measured as the av-
erage number of events correctly predicted over 50 lifetimes. 

3.1 The environments 

To create environments in which event base rates and cue 
accuracies can vary over time, we specified two parameters, 
the base rate change interval (BRCI) and the cue accuracy 
change interval (CACI). Each parameter was assigned inter-
vals of 10, 50, 100, 500, 1000, or 5000 events, yielding 36 
environments. For each organism’s lifetime, an initial base 
rate and cue accuracy were chosen randomly from a uniform 
distribution between 0.0 and 1.0. Then, after BRCI events, 
the base rate was changed to a new value chosen at random 
from the same interval, and after CACI events, a new cue 
accuracy was similarly selected. So for example an environ-
ment characterized by a BRCI of 50 and a CACI of 1000 
has base rates that change rapidly while cue accuracies re-
main relatively stable — the kind of situation in which base 
rate neglect might be adaptive. 

The current base rate and cue accuracy values controlled 
the generation of the events and cues an organism would ex-
perience on a given trial. First, event E0 or E1 was selected 



randomly with a probability distribution defined by the cur-
rent base rate. For example, if the base rate were .7, E0 

would be chosen with 30% probability and E1 with 70% 
probability. Second, based on the selected event, a cue would 
be generated according to the cue accuracy. (Note that in 
these simulations, we make the simplifying assumption that 
p(C0|E0) = p(C1|E1).) For example, if E1 was chosen and 
the cue accuracy was .4, then C1 would be generated with 
40% probability, and otherwise C0 would be generated. In 
this way, 50 lifetime sequences of 10,000 cues and events 
were generated for each of the 36 BRCI/CACI-specified 
environments. Each strategy described in the next section was 
tested on the same set of 50 sequences per environment. 

3.2 The strategies 

We compared the performance of five strategies in two 
classes: four that kept track of cue-event pairs in a decay-
ing memory table, and one that learned connection strengths 
between cues and events. Each strategy computed the proba-
bility p of event E1 given the observed cue (C0 or C1) and its 
knowledge of the past, and then predicted E1 if p > 0.5 and 
E0 if p ≤ 0.5. 

3.2.1 Contingency table-based strategies 

Four of our strategies are based on memory for the frequen-
cies of cue-event pairings as represented in the 2 × 2 table 
shown in Figure 1. The most straightforward application of 
this approach would imply a full and perfect memory of M 
events, with complete amnesia for all observations M + 1 
events ago and earlier. To use a more realistic model of mem-
ory that incorporates the assumption that old information is 
less relevant than recent information, we employed a table in 
which stored events decay exponentially as further events oc-
cur. For instance, entry a in the table is updated as follows: 
at+1 = f · at + 1 if the cue-event pair C0, E0 was just seen, 
and at+1 = f · at otherwise, where f is the decay rate pa-
rameter (0 < f < 1). In this way, a, b, c, and d maintain a 
weighted count of the past event-cue pairs seen, with the most 
recent observations getting the most weight. To paraphrase 
Douglas MacArthur 2 , old events never depart from memory; 
they just fade away. Each of the four table-based strategies 
we investigated then computed its prediction on the basis of 
the values a, b, c, and d, as described below and summarized 
in Table 1. We varied the memory decay rate f , but to allow 
memory length to be compared more directly to rates of en-
vironment change, we give our results in terms of “half-life,” 
which is the number of trials it takes a given event-cue pair 
entered into memory initially with a strength of 1.0 to decay 
to a strength of 0.5 (half-life ≈ −1/ log2 f ). 

1. Bayesian. This strategy consists of Bayesian integra-
tion of the base rates and cue accuracy, defined as the condi-
tional probabilities of E1 given the observed cue. This strat-

2Address to a Joint Meeting of Congress, April 19, 1951. 
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Figure 1: The structure of the memory for strategies 1 to 4. A de-
caying memory trace was kept for the four cells a, b, c, and d, and 
different strategies used some or all of these values. 

egy employs all four pieces of available information, and is 
usually considered the benchmark for rationality in this do-
main (Castellan, 1977). 

2. Cue accuracy alone (base rate neglect). This strategy 
considers only the probability that the cue matches the up-
coming event. By neglecting base rate information, this strat-
egy should be outperformed by the Bayesian strategy 1 in 
environments where base rates are stable and useful, but may 
gain an advantage when base rates change quickly. 

3. Adjusted cue accuracy. Absolute base rate neglect as 
embodied in strategy 2 has seldom been reported in the liter-
ature (Koehler, 1996; but see Gigerenzer & Hoffrage, 1995, 
for instances). Rather, humans and other animals seem to in-
corporate base rate information partially in their decisions, 
as is modeled by this strategy. The cue-based probability 
used in strategy 2 was adjusted by a small amount (5 per-
centage points) in the direction prescribed by the current base 
rate. This strategy is consistent with the substantial but in-
complete base rate neglect observed by Goodie and Fantino 
(1995; 1999). 

4. Base rates alone. The complement to using cue accu-
racy exclusively is using base rates exclusively. Where the 
former neglects base rates entirely, this strategy neglects cue-
based information entirely, employing only the probability 
with which each event occurs. This strategy is similar to an 
extreme form of conservatism in decision making (Edwards, 
1982). While conservatism has been described as erroneous 
reasoning, this strategy should perform well when cue accu-
racy changes frequently. 

3.2.2 The connectionist learning strategy 

The fifth strategy arises from a connectionist model of cate-
gorization that has been applied to base rate phenomena. This 
strategy dispenses with directly counted memories of events 
and instead learns continuously shifting association strengths 
between experienced cues and events. A set of input nodes 
receives activation according to the current cue, and an out-
put node makes an event prediction based on the summed 
input activation weighted by the learned connection weights 
between input and output nodes. Learning takes place after 



each cue-event pair is seen, adjusting the connection weights 
to minimize the difference between predictions and actual 
events. 

5. Least Mean Squares (LMS) learning rule. Gluck and 
Bower (1988) trained people to diagnose fictitious diseases 
from symptoms in a situation analogous to the cue-to-event 
prediction we consider here. They found base rate neglect 
that could be modeled with a simple neural network trained 
according to the LMS learning rule. Our strategy used a simi-
larly trained network with three input nodes: one activated by 
C0, one by C1, and a third that was always activated, simu-
lating background cues. We followed Gluck and Bower’s for-
mulas for updating activation weights and converting them to 
response probabilities. 
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Table 1: Formulas for calculating the predictions of the contingency-
table-based strategies (1-4) from the information stored in the 2 × 2 
table shown in Figure 1. R(x) denotes the function of rounding a 
number to the nearest integer. Because all values represented here 
are bounded by 0 and 1, all rounded values are 0 or 1, corresponding 
to predicting E0 or E1, respectively. Some values to be rounded are 
subtracted from 1 because, for example, the cue accuracy strategy 
should predict E0 when a + d is close to 1, not when it is close to 0. 

3.3 Predictions and Questions 

These 5 strategies were compared by simulating their predic-
tions over 50 lifetimes of 10,000 cue-event pairs in each of 
36 different environments. The most immediate question ad-
dressed by this comparison is whether base rate neglect (strat-
egy 2) can successfully compete with Bayesian integration 
(strategy 1) when base rates change more frequently than cue 
accuracy. Of course, if the Bayesian strategy has accurate 
knowledge of the base rates and cue accuracies in the current 
environment at every moment, it will have an advantage in us-
ing this knowledge. But such knowledge does not come from 
a guidebook — it must be acquired through experience. If 
base rates change so frequently that they are often estimated 
incorrectly, then a strategy that uses these estimates may have 

little advantage over a strategy that ignores base rate infor-
mation. We expected this to be the case when the Bayesian 
strategy attempted to incorporate rapidly changing base rates. 
Particularly when cue accuracy changed seldom, we expected 
base rate neglect strategies (2 and 3) to perform about as well 
as Bayesian integration (strategy 1). 

We correspondingly expected that “cue-accuracy neglect” 
(strategy 4) would rival Bayesian integration (strategy 1) in 
environments with rapidly-shifting cue accuracies and stable 
base rates. Finally, we were not sure how a connectionist 
strategy would fare in this comparison; in principle, it could 
learn and use both base rate and cue accuracy information, 
like Bayesian integration. But because such models have 
been used to predict (correctly) base rate neglect in compara-
ble situations, we thought strategy 5 might behave similarly 
to strategies 2 and 3. 

4. Comparing rule performance in different 
environments 

The prediction performance of all 5 strategies 3 , using a 
memory half-life of 100 cue-event pairs for strategies 1-4, 
is shown in Figure 2. Averaged across all 36 environments, 
the Bayesian integration strategy proved the most successful, 
making correct predictions for about 73% of the cue-event 
pairs (see Figure 2, left panel). The adjusted cue accuracy 
strategy (3), which must keep track of three of the cells in the 
2 × 2 table, combined this information in a slightly less ef-
fective manner, reaching about 69% correct predictions. This 
was followed closely by the LMS strategy with 68%. The two 
simplest strategies, using only two of the cells in the 2 × 2 ta-
ble (cue accuracies or base rates alone), each scored about 
66% correct overall. 

However, when environments with different structures are 
examined separately, the ordering of successful strategies 
changes systematically and dramatically. First, consider 
those environments where base rates are much less stable than 
cue accuracies, defined as those where the interval between 
cue accuracy changes is at least ten times as long as the inter-
val between base rate changes (CACI ≥ 10 · BRCI). Ten 
of the 36 environments have this structure. Averaged across 
these environments (see Figure 2, middle panel), Bayesian in-
tegration still makes correct predictions most often, even ex-
ploiting this environment structure to improve performance 
slightly to 74%. However, base rate neglect now nearly 
matches Bayesian performance, with 72% correct. Including 
the base rate adjustment (strategy 3) improves performance 
by another percentage point (73% correct). The LMS rule’s 
performance is reduced by the rapidly changing base rates 
to 65%. Finally, strategy 4, in relying solely on base rates, 

3We performed a similar comparison across these three environment 
structures for two additional types of strategies: a set corresponding to strate-
gies 1-4 that used an exact count of cue-event pairs in a sliding memory win-
dow rather than a decaying memory; and a set corresponding to strategies 1-5 
that predicted outcome events using probability matching rather than exclu-
sively choosing the more likely event. In both cases, the patterns of results 
closely resembled those reported here. 
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not surprisingly does worst of all, but is still able to extract 
enough information to make correct predictions 59% of the 
time. 

In environments where cue accuracies are much less stable 
than base rates (BRCI ≥ 10 · CACI; Figure 2, right panel), 
we find a mirror image of these results. Base rates alone 
(strategy 4) now nearly matches Bayesian performance (72% 
vs. 74%), while base rate neglect performs worst (59%). Par-
tial base rate neglect (strategy 3) achieves an intermediate ac-
curacy (66%). The LMS rule also benefits from stable base 
rates (improving to 70%). 

Because our primary question was when base rate neglect 
would approach the accuracy of the Bayesian strategy, the 
difference in performance between these two strategies is 
portrayed across all environments in Figure 3. When cue 
accuracies changed slowly and base rates changed rapidly 
(front left corner), base rate neglect was about as accurate as 
Bayesian integration. As cue accuracies also changed more 
and more rapidly (moving along the front edge toward the 
right), the two strategies continued to perform similarly, in 
part because all strategies fared less well in environments 
where both cue accuracies and base rates changed rapidly 
(front right corner). Only when base rates became much more 
stable (BRCI ≥ 500) did a large difference between the two 
strategies appear, particularly when cue accuracies were less 
reliable than base rates (rear right corner). 

In comparing the LMS learning rule with the contingency-
table strategies, three unpredicted but robust effects emerged. 

First, the LMS rule did a better job of capitalizing on stable 
base rates than on stable cue accuracies (see Figure 2, differ-
ence between right and middle panels, respectively). Second, 
this strategy performed better than any other strategy in the 
most variable environments (BRCI,CACI = 50; see Fig-
ure 4). Third, however, it lags behind other strategies in envi-
ronments of frequent base rate change where base rate neglect 
does well (Figure 2, middle panel), perhaps because it does 
relatively poorly at taking advantage of stable cue accuracies. 
This is at first surprising in view of Gluck and Bower’s (1988; 
see also Shanks, 1990) demonstration that their model using 
the LMS rule produces base rate neglect. This paradox may 
be clarified by noting the distinction between base rate ne-
glect as an empirical phenomenon, as the term is most com-
monly used, and base rate neglect as a decision process, as 
was employed here — the LMS rule can produce base rate 
neglect phenomena in some circumstances, but our results 
make it clear that it does so in a way that differs from the 
cue-accuracy strategy (2). 

4.1 Effects of memory length 

Do these effects hold with other assumptions about the 
length of memory for cue-event pairs? We tested the ro-
bustness of our results to changes in memory length by 
comparing the performance of strategies 1-4 with half-
lives of 20, 50, 100, 200, 500, 1000, 2000, and 5000 
events. We used four environments combining slow and fast 



10 

50 

100 
500 
1000 
5000 

10 
50 

100 
500 

1000 
5000 

0 

500 

1000 

1500 

2000 

2500 

D
if f

er
en

c e
 in

 P
er

fo
r m

 an
ce

 

Base 
Rate 

Change 
Interval 

Cue Accuracy Change 
Interval 

Difference in Performance Between Bayesian 
integration (strategy 1) and base rate neglect 

(strategy 2) 

Figure 3: Comparison of the performance of Bayesian integration 
and base rate neglect across all 36 environments specified by BRCI 
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predictions (out of 10,000 predictions made) between the two strate-
gies (Bayes minus base rate neglect). 

changes: BRCI/CACI = 1000/1000, 1000/50, 50/1000, 
and 50/50. The results appear in Figure 4. 

Memory length has a strong effect on overall performance: 
Longer memory traces almost always impair performance. 
This is because longer memories blur current and outdated 
base rate and cue accuracy information. Furthermore, the 
main patterns seen before remain robust across different 
memory lengths: When base rates change much more rapidly 
than cue accuracy (BRCI = 50, CACI = 1000), base rate 
neglect (strategy 2) performs nearly as well as Bayesian inte-
gration (strategy 1) for all but the shortest memories. Like-
wise, when cue accuracy changes more rapidly than base 
rates (BRCI = 1000, CACI = 50), base rate use (strategy 
4) performs nearly as well as Bayesian integration for all but 
the shortest memories. Because short memory lengths do not 
seem likely (in light of, e.g., Goodie & Fantino’s 1999 learn-
ing studies), the ability of simple strategies to match Bayesian 
performance in appropriate environments appears robust un-
der reasonable assumptions of memory length. 

5. Forms of environmental variation 

Overall, these results show that simple predictive strategies 
matched to environments with a specific structure can rival 
“optimal” models in prediction performance. We compared 
the performance of a variety of decision strategies across 
a range of environments, and found that although some of 
these strategies violate traditional norms of rationality, for in-
stance by ignoring or underweighting base rates, they produce 
good decisions in environments to which they are matched, 
and thereby yield ecological rationality (Gigerenzer & Todd, 
1999). 

But do base rates change more often than cue accuracies 

in general? We believe they do, because base rates of natural 
events are usually caused by complex and interacting factors, 
while good cues often bear a relatively simple, and therefore 
stable causal relation to the events they predict. As a simple 
example, consider the problem of predicting picnic weather. 
The base rate of rain on a particular day in a particular place 
is complexly determined by a number of time-varying fac-
tors that are often difficult to evaluate, such as approaching 
fronts, humidity, microclimate, and time of year, making ac-
curate assessment of the prior probability difficult and time-
consuming. However, these multifarious causal variables of-
ten combine to create not only rain, but also rain clouds. Dark 
clouds are a good cue to impending rain, and because they 
are mostly caused by the same forces, the likelihood of storm 
clouds when rain is imminent is expected to stay constant, 
even as the base rates of both rain and rain clouds may vary 
widely. Similarly, incidence of measles may vary from time 
to time, or from one locale to another, but red spots are an 
accurate cue in each situation. Birth rates are different in dif-
ferent countries and in different years, but pregnancy tests re-
main equally reliable. Another way of thinking of this is that 
when things in the world a clumped in space or time, organ-
isms will experience changing base rates of those things as 
they move through space or time. Just how clumped various 
things are compared to how stable (over space and time) their 
cues are will determine when base rates and cue accuracies 
are informative. 

In contrast, we can ask what environments exist where cue 
accuracies vary more rapidly than base rates. In such envi-
ronments, we could expect people to rely relatively more on 
base rate information, and thus not show (strong) base rate ne-
glect. Situations in which cues are socially constructed, and 
so may vary rapidly, are one candidate for rapidly varying 
cue accuracies, especially when there are conflicts of interest 
involved between signalling and receiving individuals. Simi-
larly, when entering a new arbitrarily constructed situation (as 
social environments can be), cue accuracies may be expected 
to change more than base rates. 

Goodie and Fantino (1995, 1996) found evidence that peo-
ple may expect such changes in cue accuracy, but not base 
rates, when encountering novel situations. In two sets of 
experiments they created conditions of direct experience in 
which, unlike in past studies, participants were not required 
to process or comprehend any statistical information, and did 
not have to report any quantitative judgments. First, they 
asked participants to predict events consisting of the occur-
rence of blue or green rectangles on the basis of cues that 
were either other blue or green rectangles (Goodie & Fantino, 
1995) or the words “blue” or “green” (Goodie & Fantino, 
1996, experiment 2). In both cases, participants showed stan-
dard base rate neglect, behaving as though they expected the 
cues to be stable, accurate predictors while the base rates 
could be variable and hence not useful. This is understand-
able in light of the facts that, on the one hand, we commonly 
match colors and match names to colors (thus experiencing 



reliable cue accuracies), and on the other hand we see some 
colors more often than others in different situations (thus ex-
periencing variable base rates). Second, when the cues were 
instead unrelated to the events, such as vertical or horizon-
tal lines preceding the blue or green rectangles, base rate ne-
glect disappeared entirely (Goodie & Fantino, 1996, Experi-
ment 1), indicating that participants were now using a strategy 
consistent with the belief that both event base rates and cues 
could be important in this novel prediction setting. 4 

6. Implications and conclusions 

While the events and cue-event associations of one’s past are 
an important guide to the future, knowledge of the past can 
prove untrustworthy if it springs from processes that are no 
longer in place. And in the real world, change is constant. 
The changing seasons, the shifting populations of interacting 
predator and prey (or parasite and host) species, the new sur-
roundings encountered by migrating creatures, all contribute 
to reducing the sameness of past and future (Potts, 1996). 

With the present simulations we have demonstrated that a 
supposedly normative, Bayesian strategy is often little more 
successful than less “rational” strategies at predicting the 
events in particular changing environments. Thus, the fact 
that people can be made to act “irrationally” in underusing 
base rates (or conversely being too conservative in chang-
ing them) appears to say more about the environment struc-
ture that people expect (whether via learning or evolution) 
to encounter than about the purported shortcomings of our 
cognitive abilities. While there are several extensions to this 
work that must be explored before definitive statements can 
be made (e.g., eliminating the constraint of equal accuracies 
for both cues, using more extreme base rates and cue accura-
cies — possibly bimodally distributed — in the environments, 
and testing the efficacy of a wider range of strategies), our 
results here indicate that observed human behavior in many 
learning situations can be ecologically rational, rather than 
irrational. 

In addition to the near-Bayesian performance of strategies 
that neglect base rates under presumably common shifting 
environmental conditions, two more of our findings bear on 
questions of standards of rationality. First is the finding that 
longer memories lead to poorer performance. It is perhaps 
surprising when more information (here stored in memory) 
results in reduced performance, but such “less is more” ef-
fects may not be so uncommon (e.g., Goldstein & Gigerenzer, 
1999). This instance presumably arises from a compromised 
ability to respond rapidly to changes in the environment. 

The other notable outcome is the performance of the LMS 
rule relative to the Bayesian strategy: sometimes better, 

4Furthermore, when participants in the familiar matching situation were 
allowed to acquire a great amount of experience about the particular experi-
mental environment — 1600 predictions — they began by neglecting event 
base rates as indicated above. Over time, though, their performance changed 
in a way that indicated the participants had learned that within this context a 
new and stable set of base rates held and hence a strategy incorporating both 
base rates and cues could again be used. 

sometimes worse. Both LMS learning (Widrow & Hoff, 
1960) and Bayesian decision making (Tversky & Kahneman, 
1982) are widely proclaimed as optimal — but only under 
certain conditions. Indeed outside those conditions, as in the 
environments explored here, the two strategies do different 
things. How then can we choose an appropriate norm of 
rationality to use as a benchmark when judging the perfor-
mance of difference decision mechanisms (and of human de-
cision making; see Hertwig & Todd, 2000)? One could argue 
that whichever approach performs better is the truly rational 
model. But the fact that Bayesian integration does better in 
some environments while the LMS rule does better in others 
shows that norms, like the decision mechanisms themselves, 
must be chosen relative to a particular environment. Thus, the 
structure of the environment proves to be the final arbiter of 
ecological rationality. 
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