
Heuristics for Ordering Cue Search in
Decision Making

Peter M. Todd Anja Dieckmann
Center for Adaptive Behavior and Cognition

MPI for Human Development
Lentzeallee 94, 14195 Berlin, Germany

ptodd@mpib-berlin.mpg.de dieckmann@mpib-berlin.mpg.de

Abstract

Simple lexicographic decision heuristics that consider cues one at a
time in a particular order and stop searching for cues as soon as a
decision can be made have been shown to be both accurate and
frugal in their use of information. But much of the simplicity and
success of these heuristics comes from using an appropriate cue
order. For instance, the Take The Best heuristic uses validity order
for cues, which requires considerable computation, potentially
undermining the computational advantages of the simple decision
mechanism. But many cue orders can achieve good decision
performance, and studies of sequential search for data records have
proposed a number of simple ordering rules that may be of use in
constructing appropriate decision cue orders as well. Here we
consider a range of simple cue ordering mechanisms, including
tallying, swapping, and move-to-front rules, and show that they can
find cue orders that lead to reasonable accuracy and considerable
frugality when used with lexicographic decision heuristics.

1 One-Reason Decis ion Making and Ordered Search

How do we know what information to consider when making a decision? Imagine
the problem of deciding which of two objects or options is greater along some
criterion, such as which of two cities is larger. We may know various facts about
each city, such as whether they have a major sports team or a university or airport.
To decide between them, we could weight and sum all the cues we know, or we
could use a simpler lexicographic rule to look at one cue at a time in a particular
order until we find a cue that discriminates between the options and indicates a
choice [1]. Such lexicographic rules are used by people in a variety of decision
tasks [2]-[4], and have been shown to be both accurate in their inferences and frugal
in the amount of information they consider before making a decision. For instance,
Gigerenzer and colleagues [5] demonstrated the surprising performance of several
decision heuristics that stop information search as soon as one discriminating cue is
found; because only that cue is used to make the decision, and no integration of
information is involved, they called these heuristics “one-reason” decision
mechanisms. Given some set of cues that can be looked up to make the decision,
these heuristics differ mainly in the search rule that determines the order in which

https://dieckmann@mpib-berlin.mpg.de
https://ptodd@mpib-berlin.mpg.de

the information is searched. But then the question of what information to consider
becomes, how are these search orders determined?

Particular cue orders make a difference, as has been shown in research on the Take
The Best heuristic (TTB) [6], [7]. TTB consists of three building blocks. (1) Search
rule: Search through cues in the order of their validity, a measure of accuracy equal
to the proportion of correct decisions made by a cue out of all the times that cue
discriminates between pairs of options. (2) Stopping rule: Stop search as soon as
one cue is found that discriminates between the two options. (3) Decision rule:
Select the option to which the discriminating cue points, that is, the option that has
the cue value associated with higher criterion values.

The performance of TTB has been tested on several real-world data sets, ranging
from professors’ salaries to fish fertility [8], in cross-validation comparisons with
other more complex strategies. Across 20 data sets, TTB used on average only a
third of the available cues (2.4 out of 7.7), yet still outperformed multiple linear
regression in generalization accuracy (71% vs. 68%). The even simpler Minimalist
heuristic, which searches through available cues in a random order, was more frugal
(using 2.2 cues on average), yet still achieved 65% accuracy. But the fact that the
accuracy of Minimalist lagged behind TTB by 6 percentage points indicates that
part of the secret of TTB’s success lies in its ordered search. Moreover, in
laboratory experiments [3], [4], [9], people using lexicographic decision strategies
have been shown to employ cue orders based on the cues’ validities or a
combination of validity and discrimination rate (proportion of decision pairs on
which a cue discriminates between the two options).

Thus, the cue order used by a lexicographic decision mechanism can make a
considerable difference in accuracy; the same holds true for frugality, as we will
see. But constructing an exact validity order, as used by Take The Best, takes
considerable information and computation [10]. If there are N known objects to
make decisions over, and C cues known for each object, then each of the C cues
must be evaluated for whether it discriminates correctly (counting up R right
decisions), incorrectly (W wrong decisions), or does not discriminate between each
of the N·(N-1)/2 possible object pairs, yielding C·N·(N-1)/2 checks to perform to
gather the information needed to compute cue validities (v = R/(R+W)) in this
domain. But a decision maker typically does not know all of the objects to be
decided upon, nor even all the cue values for those objects, ahead of time—is there
any simpler way to find an accurate and frugal cue order?

In this paper, we address this question through simulation-based comparison of a
variety of simple cue-order-learning rules. Hope comes from two directions: first,
there are many cue orders besides the exact validity ordering that can yield good
performance; and second, research in computer science has demonstrated the
efficacy of a range of simple ordering rules for a closely related search problem.
Consequently, we find that simple mechanisms at the cue-order-learning stage can
enable simple mechanisms at the decision stage, such as lexicographic one-reason
decision heuristics, to perform well.

2 Simple approaches to constructing cue search orders

To compare different cue ordering rules, we evaluate the performance of different cue
orders when used by a one-reason decision heuristic within a particular well-studied
sample domain: large German cities, compared on the criterion of population size using 9
cues ranging from having a university to the presence of an intercity train line [6], [7].
Examining this domain makes it clear that there are many good possible cue orders.
When used with one-reason stopping and decision building blocks, the mean accuracy of
the 362,880 (9!) cue orders is 70%, equivalent to the performance expected from

Minimalist. The accuracy of the validity order, 74.2%, falls toward the upper end of the
accuracy range (62-75.8%), but there are still 7421 cue orders that do better than the
validity order. The frugality of the search orders ranges from 2.53 cues per decision to
4.67, with a mean of 3.34 corresponding to using Minimalist; TTB has a frugality of 4.23,
implying that most orders are more frugal. Thus, there are many accurate and frugal cue
orders that could be found—a satisficing decision maker not requiring optimal
performance need only land on one.

An ordering problem of this kind has been studied in computer science for nearly four
decades, and can provide us with a set of potential heuristics to test. Consider the case of
a set of data records arranged in a list, each of which will be required during a set of
retrievals with a particular probability pi. On each retrieval, a key is given (e.g. a record’s
title) and the list is searched from the front to the end until the desired record, matching
that key, is found. The goal is to minimize the mean search time for accessing the
records in this list, for which the optimal ordering is in decreasing order of pi. But if
these retrieval probabilities are not known ahead of time, how can the list be ordered after
each successive retrieval to achieve fast access? This is the problem of self-organizing
sequential search [11], [12].

A variety of simple sequential search heuristics have been proposed for this problem,
centering on three main approaches: (1) transpose, in which a retrieved record is moved
one position closer to the front of the list (i.e., swapping with the record in front of it); (2)
move-to-front (MTF), in which a retrieved record is put at the front of the list, and all
other records remain in the same relative order; and (3) count, in which a tally is kept of
the number of times each record is retrieved, and the list is reordered in decreasing order
of this tally after each retrieval. Because count rules require storing additional
information, more attention has focused on the memory-free transposition and MTF
rules. Analytic and simulation results (reviewed in [12]) have shown that while
transposition rules can come closer to the optimal order asymptotically, in the short run
MTF rules converge more quickly (as can count rules). This may make MTF (and count)
rules more appealing as models of cue order learning by humans facing small numbers of
decision trials. Furthermore, MTF rules are more responsive to local structure in the
environment (e.g., clumped retrievals over time of a few records), and transposition can
result in very poor performance under some circumstances (e.g., when neighboring pairs
of “popular” records get trapped at the end of the list by repeatedly swapping places).

It is important to note that there are important differences between the self-
organizing sequential search problem and the cue-ordering problem we address
here. In particular, when a record is sought that matches a particular key, search
proceeds until the correct record is found. In contrast, when a decision is made
lexicographically and the list of cues is searched through, there is no one “correct”
cue to find—each cue may or may not discriminate (allow a decision to be made).
Furthermore, once a discriminating cue is found, it may not even make the right
decision. Thus, given feedback about whether a decision was right or wrong, a
discriminating cue could potentially be moved up or down in the ordered list. This
dissociation between making a decision or not (based on the cue discrimination
rates), and making a right or wrong decision (based on the cue validities), means
that there are two ordering criteria in this problem—frugality and accuracy—as
opposed to the single order—search time—for records based on their retrieval
probability pi. Because record search time corresponds to cue frugality, the
heuristics that work well for the self-organizing sequential search task are likely to
produce orders that emphasize frugality (reflecting cue discrimination rates) over
accuracy in the cue-ordering task. Nonetheless, these heuristics offer a useful
starting point for exploring cue-ordering rules.

2 .1 The cue -order ing ru les
We focus on search order construction processes that are psychologically plausible by
being frugal both in terms of information storage and in terms of computation. The
decision situation we explore is different from the one assumed by Juslin and Persson
[10] who strongly differentiate learning about objects from later making decisions about
them. Instead we assume a learning-while-doing situation, consisting of tasks that have
to be done repeatedly with feedback after each trial about the adequacy of one’s decision.
For instance, we can observe on multiple occasions which of two supermarket checkout
lines, the one we have chosen or (more likely) another one, is faster, and associate this
outcome with cues including the lines’ lengths and the ages of their respective cashiers.
In such situations, decision makers can learn about the differential usefulness of cues for
solving the task via the feedback received over time.

We compare several explicitly defined ordering rules that construct cue orders for
use by lexicographic decision mechanisms applied to a particular probabilistic
inference task: forced choice paired comparison, in which a decision maker has to
infer which of two objects, each described by a set of binary cues, is “bigger” on a
criterion—just the task for which TTB was formulated. After an inference has been
made, feedback is given about whether a decision was right or wrong. Therefore,
the order-learning algorithm has information about which cues were looked up,
whether a cue discriminated, and whether a discriminating cue led to the right or
wrong decision. The rules we propose differ in which pieces of information they
use and how they use them. We classify the learning rules based on their memory
requirement—high versus low—and their computational requirements in terms of
full or partial reordering (see Table 1).

Table 1: Learning rules classified by memory and computational requirements

The validity rule, a type of count rule, is the most demanding of the rules we
consider in terms of both memory requirements and computational complexity. It
keeps a count of all discriminations made by a cue so far (in all the times that the
cue was looked up) and a separate count of all the correct discriminations.
Therefore, memory load is comparatively high. The validity of each cue is
determined by dividing its current correct discrimination count by its total
discrimination count. Based on these values computed after each decision, the rule
reorders the whole set of cues from highest to lowest validity.

High memory load,
complete reordering

High memory load,
local reordering

Low memory load,
local reordering

Validity: reorders cues
based on their
current validity

Tally: reorders cues
by number of
correct minus
incorrect decisions
made so far

Associative/delta rule:
reorders cues by
learned association
strength

Tally swap: moves
cue up (down) one
position if it has
made a correct
(incorrect) decision
if its tally of correct
minus incorrect
decisions is ≥ (≤)
than that of next
higher (lower) cue

Simple swap: moves
cue up one position
after correct decision,
and down after an
incorrect decision

Move-to-front (2 forms):
 Take The Last (TTL):

moves discriminating
cue to front

 TTL-correct: moves
cue to front only if it
correctly discriminates

The tally rule only keeps one count per cue, storing the number of correct decisions
made by that cue so far minus the number of incorrect decisions. If a cue
discriminates correctly on a given trial, one point is added to its tally, if it leads to
an incorrect decision, one point is subtracted. The tally rule is less demanding in
terms of memory and computation: Only one count is kept, no division is required.

The simple swap rule uses the transposition rather than count approach. This rule
has no memory of cue performance other than an ordered list of all cues, and just
moves a cue up one position in this list whenever it leads to a correct decision, and
down if it leads to an incorrect decision. In other words, a correctly deciding cue
swaps positions with its nearest neighbor upwards in the cue order, and an
incorrectly deciding cue swaps positions with its nearest neighbor downwards.

The tally swap rule is a hybrid of the simple swap rule and the tally rule. It keeps a
tally of correct minus incorrect discriminations per cue so far (so memory load is
high) but only locally swaps cues: When a cue makes a correct decision and its tally
is greater than or equal to that of its upward neighbor, the two cues swap positions.
When a cue makes an incorrect decision and its tally is smaller than or equal to that
of its downward neighbor, the two cues also swap positions.

We also evaluate two types of move-to-front rules. First, the Take The Last (TTL)
rule moves the last discriminating cue (that is, whichever cue was found to
discriminate for the current decision) to the front of the order. This is equivalent to
the Take The Last heuristic [6], [7], which uses a memory of cues that discriminated
in the past to determine cue search order for subsequent decisions. Second, TTL-
correct moves the last discriminating cue to the front of the order only if it correctly
discriminated; otherwise, the cue order remains unchanged. This rule thus takes
accuracy as well as frugality into account.

Finally, we include an associative learning rule that uses the delta rule to update cue
weights according to whether they make correct or incorrect discriminations, and
then reorders all cues in decreasing order of this weight after each decision. This
corresponds to a simple network with nine input units encoding the difference in cue
value between the two objects (A and B) being decided on (i.e., ini = -1 if
cuei(A)<cuei(B), 1 if cuei(A)>cuei(B), and 0 if cuei(A)=cuei(B) or cuei was not
checked) and with one output unit whose target value encodes the correct decision (t
= 1 if criterion(A)>criterion(B), otherwise -1), and with the weights between inputs
and output updated according to ∆wi = lr · (t - ini·wi) · ini with learning rate lr = 0.1.
We expect this rule to behave similarly to Oliver’s rule initially (moving a cue to
the front of the list by giving it the largest weight when weights are small) and to
swap later on (moving cues only a short distance once weights are larger).

3 Simulation Study of Simple Ordering Rules

To test the performance of these order learning rules, we use the German cities data set
[6], [7], consisting of the 83 largest-population German cities (those with more than
100,000 inhabitants), described on 9 cues that give some information about population
size. Discrimination rate and validity of the cues are negatively correlated (r = -.47). We
present results averaged over 10,000 learning trials for each rule, starting from random
initial cue orders. Each trial consisted of 100 decisions between randomly selected
decision pairs. For each decision, the current cue order was used to look up cues until a
discriminating cue was found, which was used to make the decision (employing a one-
reason or lexicographic decision strategy). After each decision, the cue order was
updated using the particular order-learning rule. We start by considering the cumulative
accuracies (i.e., online or amortized performance—[12]) of the rules, defined as the total
percentage of correct decisions made so far at any point in the learning process. The

contrasting measure of offline accuracy—how well the current learned cue order would
do if it were applied to the entire test set—will be subsequently reported (see Figure 1).

For all but the move-to-front rules, cumulative accuracies soon rise above that of the
Minimalist heuristic (proportion correct = .70) which looks up cues in random order and
thus serves as a lower benchmark. However, at least throughout the first 100 decisions,
cumulative accuracies stay well below the (offline) accuracy that would be achieved by
using TTB for all decisions (proportion correct = .74), looking up cues in the true order of
their ecological validities. Except for the move-to-front rules, whose cumulative
accuracies are very close to Minimalist (mean proportion correct in 100 decisions: TTL:
.701; TTL-correct: .704), all learning rules perform on a surprisingly similar level, with
less than one percentage point difference in favor of the most demanding rule (i.e., delta
rule: .719) compared to the least (i.e., simple swap: .711; for comparison: tally swap:
.715; tally: .716; validity learning rule: .719). Offline accuracies are slightly higher, again
with the exception of the move to front rules (TTL: .699; TTL-correct: .702; simple
swap: .714; tally swap: .719; tally: .721; validity learning rule: .724; delta rule: .725; see
Figure 1). In longer runs (10,000 decisions) the validity learning rule is able to converge
on TTB’s accuracy, but the tally rule’s performance changes little (to .73).

Figure 1: Mean offline accuracy of Figure 2: Mean offline frugality of
order learning rules order learning rules

All learning rules are, however, more frugal than TTB, and even more frugal than
Minimalist, both in terms of online as well as offline frugality. Let us focus on their
offline frugality (see Figure 2): On average, the rules look up fewer cues than Minimalist
before reaching a decision. There is little difference between the associative rule, the
tallying rules and the swapping rules (mean number of cues looked up in 100 decisions:
delta rule: 3.20; validity learning rule: 3.21; tally: 3.01; tally swap: 3.04; simple swap:
3.13). Most frugal are the two move-to front rules (TTL-correct: 2.87; TTL: 2.83).

Consistent with this finding, all of the learning rules lead to cue orders that show positive
correlations with the discrimination rate cue order (reaching the following values after
100 decisions: validity learning rule: r = .18; tally: r = .29; tally swap: r = .24; simple
swap: r = .18; TTL-correct: r = .48; TTL: r = .56). This means that cues that often lead to
discriminations are more likely to end up in the first positions of the order. This is
especially true for the move-to-front rules. In contrast, the cue orders resulting from all
learning rules but the validity learning rule do not correlate or correlate negatively with
the validity cue order, and even the correlations of the cue orders resulting from the
validity learning rule after 100 decisions only reach an average r = .12.

But why would the discrimination rates of cues exert more of a pull on cue order than
validity, even when the validity learning rule is applied? As mentioned earlier, this is
what we would expect for the move-to-front rules, but it was unexpected for the other
rules. Part of the explanation comes from the fact that in the city data set we used for the

simulations, validity and discrimination rate of cues are negatively correlated. Having a
low discrimination rate means that a cue has little chance to be used and hence to
demonstrate its high validity. Whatever learning rule is used, if such a cue is displaced
downward to the lower end of the order by other cues, it may have few chances to escape
to the higher ranks where it belongs. The problem is that when a decision pair is finally
encountered for which that cue would lead to a correct decision, it is unlikely to be
checked because other, more discriminating although less valid, cues are looked up
before and already bring about a decision. Thus, because one-reason decision making is
intertwined with the learning mechanism and so influences which cues can be learned
about, what mainly makes a cue come early in the order is producing a high number of
correct decisions and not so much a high ratio of correct discriminations to total
discriminations regardless of base rates.

This argument indicates that performance may differ in environments where cue
validities and discrimination rates correlate positively. We tested the learning rules on
one such data set (r=.52) of mammal species life expectancies, predicted from 9 cues. It
also differs from the cities environment with a greater difference between TTB’s and
Minimalist’s performance (6.5 vs. 4 percentage points). In terms of offline accuracy, the
validity learning rule now indeed more closely approaches TTB’s accuracy after 100
decisions (.773 vs. .782)., The tally rule, in contrast, behaves very much as in the cities
environment, reaching an accuracy of .752, halfway between TTB and Minimalist
(accuracy =.716). Thus only some learning rules can profit from the positive correlation.

4 Discussion

Most of the simpler cue order learning rules we have proposed do not fall far behind a
validity learning rule in accuracy, and although the move-to-front rules cannot beat the
accuracy achieved if cues were selected randomly, they compensate for this failure by
being highly frugal. Interestingly, the rules that do achieve higher accuracy than
Minimalist also beat random cue selection in terms of frugality.

On the other hand, all rules, even the delta rule and the validity learning rule, stay below
TTB’s accuracy across a relatively high number of decisions. But often it is necessary to
make good decisions without much experience. Therefore, learning rules should be
preferred that quickly lead to orders with good performance. The relatively complex rules
with relatively high memory requirement, i.e., the delta and the validity learning rule, but
also the tally learning rule, more quickly rise in accuracy compared the rules with lower
requirements. Especially the tally rule thus represents a good compromise between cost,
correctness and psychological plausibility considerations.

Remember that the rules based on tallies assume full memory of all correct minus
incorrect decisions made by a cue so far. But this does not make the rule implausible, at
least from a psychological perspective, even though computer scientists were reluctant to
adopt such counting approaches because of their extra memory requirements. There is
considerable evidence that people are actually very good at remembering the frequencies
of events. Hasher and Zacks [13] conclude from a wide range of studies that frequencies
are encoded in an automatic way, implying that people are sensitive to this information
without intention or special effort. Estes [14] pointed out the role frequencies play in
decision making as a shortcut for probabilities. Further, the tally rule and the tally swap
rule are comparatively simple, not having to keep track of base rates or perform divisions
as does the validity rule. From the other side, the simple swap and move to front rules
may not be much simpler, because storing a cue order may be about as demanding as
storing a set of tallies. We have run experiments (reported elsewhere) in which indeed the
tally swap rule best accounts for people’s actual processes of ordering cues.

Our goal in this paper was to explore how well simple cue-ordering rules could work in
conjunction with lexicographic decision strategies. This is important because it is

necessary to take into account the set-up costs of a heuristic in addition to its application
costs when considering the mechanism’s overall simplicity. As the example of the
validity search order of TTB shows, what is easy to apply may not necessarily be so easy
to set up. But simple rules can also be at work in the construction of a heuristic’s building
blocks. We have proposed such rules for the construction of one building block, the
search order. Simple learning rules inspired by research in computer science can enable a
one-reason decision heuristic to perform only slightly worse than if it had full knowledge
of cue validities from the very beginning. Giving up the assumption of full a priori
knowledge for the slight decrease in accuracy seems like a reasonable bargain: Through
the addition of learning rules, one-reason decision heuristics might lose some of their
appeal to decision theorists who were surprised by the performance of such simple
mechanisms compared to more complex algorithms, but they gain psychological
plausibility and so become more attractive as explanations for human decision behavior.

References

[1] Fishburn, P.C. (1974). Lexicographic orders, utilities and decision rules: A survey.
Management Science, 20, 1442-1471.

[2] Payne, J.W., Bettman, J.R., & Johnson, E.J. (1993). The adaptive decision maker. New York:
Cambridge University Press.

[3] Bröder, A. (2000). Assessing the empirical validity of the “Take-The-Best” heuristic as a model
of human probabilistic inference. Journal of Experimental Psychology: Learning, Memory, and
Cognition, 26 (5), 1332-1346.

[4] Bröder, A. (2003). Decision making with the “adaptive toolbox”: Influence of environmental
structure, intelligence, and working memory load. Journal of Experimental Psychology: Learning,
Memory, & Cognition, 29, 611-625.

[5] Gigerenzer, G., Todd, P.M., & The ABC Research Group (1999). Simple heuristics that make
us smart. New York: Oxford University Press.

[6] Gigerenzer, G., & Goldstein, D.G. (1996). Reasoning the fast and frugal way: Models of
bounded rationality. Psychological Review, 103 (4), 650-669.

[7] Gigerenzer, G., & Goldstein, D.G. (1999). Betting on one good reason: The Take The Best
Heuristic. In G. Gigerenzer, P.M. Todd & The ABC Research Group, Simple heuristics that make
us smart. New York: Oxford University Press.

[8] Czerlinski, J., Gigerenzer, G., & Goldstein, D.G. (1999). How good are simple heuristics? In G.
Gigerenzer, P.M. Todd & The ABC Research Group, Simple heuristics that make us smart. New
York: Oxford University Press.

[9] Newell, B.R., & Shanks, D.R. (2003). Take the best or look at the rest? Factors influencing
‘one-reason’ decision making. Journal of Experimental Psychology: Learning, Memory, and
Cognition, 29, 53-65.

[10] Juslin, P., & Persson, M. (2002). PROBabilities from EXemplars (PROBEX): a “lazy”
algorithm for probabilistic inference from generic knowledge. Cognitive Science, 26, 563-607.

[11] Rivest, R. (1976). On self-organizing sequential search heuristics. Communications of the
ACM, 19(2), 63-67.

[12] Bentley, J.L. & McGeoch, C.C. (1985). Amortized analyses of self-organizing sequential
search heuristics. Communications of the ACM, 28(4), 404-411.

[13] Hasher, L., & Zacks, R.T. (1984). Automatic Processing of fundamental information: The case
of frequency of occurrence. American Psychologist, 39, 1372-1388.

[14] Estes, W.K. (1976). The cognitive side of probability learning. Psychological Review, 83, 37-
64.

