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J ¨ ORG RIESKAMP and PETER M. TODD 

THE EVOLUTION OF COOPERATIVE STRATEGIES 

FOR ASYMMETRIC SOCIAL INTERACTIONS 

ABSTRACT. How can cooperation be achieved between self-interested 
individuals in commonly-occurring asymmetric interactions where agents 
have different positions? Should agents use the same strategies that are 
appropriate for symmetric social situations? We explore these questions 
through the asymmetric interaction captured in the indefinitely repeated 
investment game (IG). In every period of this game, the first player 
decides how much of an endowment he wants to invest, then this 
amount is tripled and passed to the second player, who finally decides 
how much of the tripled investment she wants to return to the first 
player. The results of three evolutionary studies demonstrate that the 
best-performing strategies for this asymmetric game differ from those 
for a similar but symmetric game, the indefinitely repeated Prisoner’s 
dilemma game. The strategies that enable cooperation for the asymmetric 
IG react more sensitively to exploitation, meaning that cooperation can 
more easily break down. Furthermore, once cooperation has stopped, it 
is much more difficult to reestablish than in symmetric situations. Based 
on these results, the presence of asymmetry in an interaction appears 
to be an important factor affecting adaptive behavior in these common 
social situations. 

KEY WORDS: bargaining, evolutionary stable strategies, finite state auto-
mata, investment game, repeated games. 

1. INTRODUCTION 

The study of cooperation between self-interested individuals 
has been dominated by a focus on symmetric games. But social 
relationships are often imbalanced. Consider for instance the 
relationship between an employee and employer or a patient 
and a physician. In the first case, an employee might have fre-
quently worked overtime trusting that his effort will be recip-
rocated, but the employer may or may not ultimately reward 
this extra effort. Individuals must frequently deal with others in 



70 J ¨ ORG RIESKAMP AND PETER M. TODD 

positions at a different level of power, making their interactions 
asymmetric. Whereas the two individuals in a symmetric inter-
action face the same decision alternatives, in an asymmetric 
interaction the decision alternatives differ for the two parties. 
Do these commonplace asymmetric interactions support or 
inhibit the emergence of cooperation? 

The main goal of the present study is to explore whether 
decision strategies exist that can reliably lead to ongoing 
cooperation in an asymmetric interaction, and see whether 
such strategies differ from those that are appropriate for coop-
eration in a symmetric interaction. To achieve our goal, we 
first narrow our attention to a particular simple form of 
asymmetric social exchange, captured in the investment game 
(IG—Berg et al., 1995). This game, sometimes also labeled 
the trust game, has so far been studied experimentally, but 
here we take a simulation approach. This approach begins 
with the assumption that human cognition is adapted to the 
problems people face, implying in particular that people pos-
sess or learn strategies that produce beneficial outcomes in 
social interactions. Consequently, decision strategies that com-
pete well against other strategies are more likely to be used. 
We will study the way in which strategies compete against 
each other by means of simulations of evolutionary processes 
acting on populations of agents. These simulations proceed 
as a sequence of generations in which agents equipped with 
specific strategies interact with one another. Agents with bet-
ter-performing strategies—that is, those that get higher pay-
offs compared to others—are more likely to be present in 
subsequent generations. During the evolutionary process the 
strategies can also be modified (e.g., by mutation) and thereby 
potentially improved, and ultimately the simulation often con-
verges to a set of high-payoff strategies. 

The results of such evolutionary simulations can be employed 
to help explain how cooperation can develop and to illustrate 
strategies that guide people’s decisions. We describe these strat-
egies in the form of finite automata (e.g. Abreu and Rubinstein, 
1988; Aumann, 1981; Binmore and Samuelson, 1992; Nelson, 
1975; Suppes, 1969), which are models that change their state 
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and their corresponding output depending on the inputs encoun-
tered. We compare the strategies we find for the repeated IG with 
those that have been investigated for the repeated symmetric 
Prisoner’s dilemma game (PDG—Luce and Raiffa, 1957), usu-
ally taken as the standard framework within which to study 
the emergence and breakdown of cooperation in social inter-
actions. Given that asymmetric situations are common, as we 
argue, the IG provides an extension of the studies previously 
carried out on the PDG. 

This article is organized as follows. We first introduce the 
IG as a simple form of an asymmetric interaction, and then 
use three game-theoretical concepts to evaluate the perfor-
mance of a small set of strategies for the IG. Through this 
evaluation the weaknesses of the game-theoretical concepts 
and the need for our evolutionary approach, manifested in 
the three studies that follow, become clear. In the first evo-
lutionary study the differences between the IG and the PDG 
are examined. The second study explores the effect of strat-
egy complexity on performance. The third study investigates 
the consequences of the sequential decision process in the IG. 
Finally, we discuss the results of all three studies to address 
our guiding question of how particular strategies can explain 
cooperation in an asymmetric interaction. 

2. EVALUATING THE PERFORMANCE OF REPEATED GAME 
STRATEGIES 

What are strategies that enable cooperation—trust and rec-
iprocity—between unrelated individuals? As a first step to 
understand the mechanisms that enable cooperation, we will 
evaluate strategies analytically, illustrating their strengths and 
weaknesses. For this purpose, first an asymmetric social inter-
action is defined. 

2.1. The investment game representing an asymmetric social 
interaction 

In asymmetric games, player roles are not interchangeable as 
they are in symmetric games—that is, the two players face 
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different decision options with different resulting payoffs. The 
IG represents an asymmetric interaction between two indi-
viduals. In this two-person sequential bargaining game, both 
players receive an endowment. First, player A can invest any 
amount of the endowment, which is then tripled, producing 
some surplus before it is delivered to player B. Next, player B 
decides how much of the tripled amount she wishes to return 
to player A (Figure 1). 

Assume each player starts with an endowment of 10. Player 
A could invest 5 of his 10 endowment, which is then multi-
plied to 15 and sent to player B. Player B could then return 5, 
so that player A ends up with the five he kept and the addi-
tional five player B returned, and player B receives the 10 of 
the trebled investment she kept and her own endowment of 10. 
If player A makes any investment, this leads to a total pay-
off for both players greater than the sum of both endowments, 
producing a surplus. If player A invests the whole endowment 
the maximum possible surplus is produced, defining an effi-
cient outcome, whereas any investment lower than 100% leads 
to an inefficient outcome. The game-theoretic prediction (the 
subgame-perfect equilibrium, see Fudenberg and Tirole, 1991) 
for the IG is straightforward: to maximize her monetary payoff, 
player B will return nothing to player A. Player A can antici-
pate this, so he will not make an investment, which leads to the 
most inefficient outcome with no surplus. 

However, experimental results deviate from this equilibrium 
prediction. In a study by Berg et al. (1995), participants in 
the position of player A sent on average $5.2 of their endow-
ment of $10 to their counterpart, whereas participants in the 
position of player B returned on average $4.7 of the trebled 
investment. Only two of the 32 player A participants in the 
experiment sent nothing to their counterpart. This result is 
in line with other experimental studies of asymmetric games 
showing that people often trust each other and reciprocate 
trust with fair decisions (Fehr et al., 1997; G¨ uth et al., 1997; 
Van Huyck et al., 1995). 

How can this observed cooperation be explained when 
assuming individuals are primarily self-interested? One common 
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explanation is based on the idea that repeated interactions 
enable cooperation by creating the opportunity to recipro-
cate cooperative behavior and punish uncooperative behavior. 
Trivers (1971) was one of the first who emphasized the role of 
repetition, which has attracted most of the research that tries 
to explain cooperation between unrelated, self-interested indi-
viduals (Axelrod, 1984; Schelling, 1960; Sugden, 1986). Beside 
repetition other factors that promote cooperation between self-
interested individuals have been studied, for instance the role 
of reputation (Alexander, 1987), agents’ interaction depend-
ing on spatial localization (Hoffman, 1999; Nowak and May, 
1992; Aktipis, 2004), or the self-commitment toward coopera-
tion detectable by others (G¨ uth and Kliemt, 2000). 

2.2. Repeated games 

Indeed, repetition can support cooperation in the symmet-
ric indefinitely repeated (iterated) Prisoner’s dilemma game 
(IPD). The two players of the unrepeated, “one-shot” PDG 
can either cooperate or defect (see Figure 2). For both play-
ers, defecting always leads to a greater payoff regardless of 
whether the opponent defects or cooperates; thus, defect-
ing is a dominant strategy. However, each player receives a 
greater payoff when both players cooperate than when they 
both defect, thus the individual payoff-maximizing strategies 
(mutual defection) lead to an inefficient outcome. 

Investment: 
x% of 10 

Increase: 
3.10.x 

Player B 

Return: 
y% of 3.10.x 

Payoff A=10-10.x+y.3.10.x 

Player A 

Payoff B=10+3.10.x-y.3.10.x 

} 

Figure 1. The investment game. The payoff of player A is defined as his 
endowment minus his investment plus player B’s return. Player B’s payoff is 
defined as her endowment plus the trebled investment of player A minus player 
B’s return. 
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Player B 
Player A Cooperate Defect 
Cooperate 20, 20 0, 40* 
Defect 40*, 0 10*, 10* 

Figure 2. The Prisoner’s dilemma game. The first value in the cells represents 
player A’s payoff and the second value player B’s payoff. Because the game 
is symmetric, the roles of players A and B are interchangeable. The asterisks 
indicate the best reply strategies for each player. The cell with two asterisks 
indicates the Nash equilibrium. 

The PDG differs from the IG in its symmetric payoff 
structure, simultaneous decisions, and dichotomous decision 
alternatives (cooperate/defect versus a numerical amount to 
transfer). However, both games represent a social dilemma, in 
that the individuals’ rational decisions lead to a socially unde-
sired (and inefficient) outcome—the absence of cooperation. 
Due to this similarity between the two games, we begin our 
exploration of cooperating strategies for the repeated IG by 
considering strategies that have been studied for the IPD. 

In the IPD the game is repeated for an unknown number 
of periods, so that cooperating can become payoff-maximiz-
ing because the other player may reciprocate cooperation in 
the hopes of maintaining the benefits of mutual cooperation 
in future periods. Axelrod (1984) demonstrated that a sim-
ple strategy called Tit for Tat (TFT) can lead to coopera-
tion in the IPD, as it cooperates as long as the opponent 
cooperates and defects only if the opponent defected in the 
previous period. Astonishingly, this simple strategy outper-
formed many other more sophisticated strategies in tourna-
ment competitions. Another simple strategy, Grim, cooperates 
in the first period and continues to cooperate unless the other 
player defects, in which case it defects in all following periods 
regardless of the opponent’s decisions (Binmore, 1994), which 
makes Grim less cooperative compared to TFT. The main 
advantage of Grim is that it provides little opportunity for 
exploitation as it can only be exploited once, which can make 
it competitive in evolutionary simulations (Linster, 1992). 

However, both Grim and TFT are vulnerable to mistakes. 
For instance, if two players apply TFT and one player defects 
accidentally, this leads to a long period of alternating defection, 
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until one player makes a second mistake and mutual cooperation 
returns (Nowak and Sigmund, 1993). The strategy Pavlov (or win-
stay/lose-shift) out-competes TFT if small mistakes occur. Pavlov 
cooperates in the first period and then cooperates if both play-
ers made the same decision in the previous period, otherwise it 
defects (Kraines and Kraines, 1993, 1995). If one of two players 
cooperating by applying Pavlov defects by mistake, both players 
will defect in the following period, but will proceed to cooperate 
again in the period after that. Other strategies less vulnerable to 
mistakes are Generous TFT (Nowak and Sigmund, 1994) or Con-
trite TFT (Boyd, 1989; Sugden, 1986). Non-cooperative strategies 
also frequently arise in evolutionary simulations, as for instance 
the strategy always-defect, which defects regardless of the oppo-
nent’s decision. It outperforms TFT when playing against it in 
a direct competition. Starting from a heterogeneous population 
of randomly created strategies, always-defect is often the strategy 
that prevails in the population at the beginning of an evolution-
ary process before other strategies evolve (Boyd, 1989; Hoffmann, 
2001; Marinoff, 1990; Sober, 1992; Young and Foster, 1991). 

2.3. Evaluating strategies for the investment game 

In this section, we will define the indefinitely repeated (iter-
ated) investment game (IIG) and evaluate strategies for this 
game. The IIG can be defined as follows: The game consists 
of two players, A and B. After they play the IG once, con-
stituting one period, a new period follows with a probabil-
ity of δ (here, δ = 0.99). Hence, the probability that the game 
will last for exactly t periods is δt−1(1 − δ) and the expected 
number of periods for one game is therefore 

∞ 
t=0 tδ

t−1(1 − δ), 
which is a geometrical series that converges to 1/(1-δ). For δ = 
0.99 the expected number of periods is 100. In every period, 
both players receive an endowment of 10. Player A decides 
what integer percentage (0–100%) of the endowment to invest. 
As before, any investment is multiplied by 3.0 and then sent 
to player B who decides whether to return any integer per-
centage of the trebled investment to player A (none of B’s 
own endowment can be passed to A). 
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Due to the difference in payoff structures (asymmetric versus 
symmetric) between the IIG and IPD, it can be expected that 
the evolved strategies will also differ. In particular, the asymme-
try of the IIG imposes a unique problem on player A: player 
A’s investment represents a risky outlay because player B could 
exploit player A by making no return. Player B cannot make up 
this exploitation in later periods as she cannot herself initiate 
cooperation again. Instead it has to be player A who reinitiates 
cooperation by investing. In contrast, in the IPD either player 
can compensate exploitation by initiating cooperation. This is 
a crucial difference. Consequently, it can be predicted that the 
strategies that enable cooperation for the asymmetric IIG will 
be less cooperative than those for the symmetric IPD. A strat-
egy is less cooperative compared to another strategy, when it 
has fewer conditions under which it cooperates. For instance, 
Grim is a less cooperative strategy than TFT, because it only 
cooperates when the opponent cooperated in all previous peri-
ods, whereas TFT cooperates whenever the opponent cooper-
ated in the preceding period. 

The game-theoretic equilibrium prediction for the IIG can 
be drawn from the folk theorem for indefinitely repeated 
games (Fudenberg and Tirole, 1991). The Folk Theorem 
requires that an outcome should be “individually rational” for 
each payoff-maximizing player. Any outcome with an average 
payoff for player A lower than player A’s endowment is indi-
vidually not rational for player A. Likewise, any outcome that 
gives player B an average payoff below player B’s endowment 
plus the proportion 1-δ (here 1%) of the trebled investment 
is individually not rational for player B: Player B on average 
would profit more by keeping the whole trebled investment in 
one single period, even if player A thereafter stops any invest-
ment, than by keeping less than 1% of the trebled investment 
in each period of the game (given a constant non-zero invest-
ment rate). Figure 3 shows all possible payoff combinations 
for the game and indicates the payoff combinations that rep-
resent equilibria according to the Folk Theorem (the small 
“gap” at the bottom of the triangle corresponds to the payoffs 
smaller than 1% of the trebled investment above player B’s 
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Figure 3. Payoff region for the indefinitely repeated IG and the prediction of 
the Folk theorem for indefinitely repeated games. The large triangle indicates all 
possible payoff combinations for the two players (payoff region). The hatched 
triangle marks the payoff combinations that are equilibria for the repeated IG 
with a continuation probability of 0.99, as predicted by the Folk theorem. The 
diagonal between the two coordinates (30, 10) and (0, 40) represents efficient 
outcomes that maximize the mutual payoffs. 

endowment that player B does not accept). Some equilibria 
consist of efficient outcomes that maximize the sum of both 
player’s payoffs (i.e. a sum of payoff of 40). For the follow-
ing, we consider an efficient outcome that leads to a joint pay-
off of 40 as a “cooperative outcome”, whereas any inefficient 
outcome is considered an “uncooperative outcome”. Whether 
or not a cooperative outcome is obtained depends solely on 
player A’s decision, which has to be an investment of 100%. 
Unfortunately, as can be seen in Figure 3, the Folk Theorem 
predicts many equilibria and it is not clear how they are 
reached. Therefore it does not help us find cooperative strat-
egies for the IIG. Instead, we must turn to consider spe-
cific strategies for the repeated game and how they perform. 
We will represent strategies with finite automata, which can 
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capture a wide range of strategies, including all the ones dis-
cussed above for the IPD. 

An automaton can be visualized as a graph of connected 
states. The automaton starts in the initial state. Given input 
corresponding to the opponent’s last decision, the automa-
ton can move to a different state. For the purpose of par-
simony, we assume that each automaton has an “aspiration 
level” with which the opponents’ level of investment or return 
is sorted into two categories (i.e., player A’s move is labeled 
“Trust” versus “Distrust” for the opponent player B auto-
mata, and player B’s move is labeled “Reciprocity” versus 
“Exploitation” for player A automata), producing a dichoto-
mous input. Each state determines an output, which is defined 
as the player’s investment or return rate. Because player B can 
take player A’s first decision (trust or distrust) into account 
in the first period, the automaton for player B can have two 
initial states. For the special case in which player A invests 
nothing, player B can make a decision (e.g., choose a return 
rate of 40%), but (because any percent of the zero invest-
ment is zero) nothing is returned to player A. In this case, 
player A does not find out anything about player B’s decision. 
Thus following a zero investment, player A’s next move cannot 
depend on player B’s decision, and so player A’s automata can 
only move to a single next state. 

With this notation, strategies for the IIG can easily be rep-
resented. However, the possible number of automata is quite 
large, even if one restricts the automata considered to a max-
imum of two states. Therefore we focus our analytical explo-
ration (though not our simulations) on a small but diverse 
set of just six strategies for player A (Figure 4). The Never-
Invest strategy never makes an investment, whereas Always-
Invest always makes an investment of 100%. Min-Grim and 
Fair-Grim are Grim strategies that invest fully as long as B’s 
return is above the aspiration levels of 34 and 67% respec-
tively. (The label “Min” refers to the “minimal” return that 
player B could make—34%—and still provide player A with 
a barely profitable payoff just above his endowment of 10. 
The label “Fair” refers to the return rate from player B of 
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Player A Strategies 

Punish-Once 

E 
100% 0% 

R 

Always-Invest 

100% 

0% 

Never-Invest 

Booster 
E 

50% 100% 
R 

R 

E 

E (Exploiting): B’s Return < 34%; 
R (Reciprocating): B’s Return   34% 

E 

Min-Grim 

100% 0% 

R 

E 

Fair-Grim 

100% 0% 

R 

E (Exploiting): B’s Return < 34%; 
R (Reciprocating): B’s Return    34% 

E (Exploiting): B’s Return < 67%; 
R (Reciprocating): B’s Return    67% 

E (Exploiting): B’s Return < 67%; 
R (Reciprocating): B’s Return   67% 

Figure 4. Selected set of strategies for player A. For each automaton states are 
represented by circles and the initial state is indicated by the left arrow that is 
not connected to any other state. Each state determines an output, represented 
by the number inside each circle. Given an input from the opponent, automata 
may move to other states, indicated by the arrows that start from a state and 
point to the same or another state; the inputs that cause these particular moves 
are indicated by the label on each arrow. 

67%, which yields an equal “fair” payoff of ∼20 for both 
players if A invests fully.) In contrast to the Grim strategies’ 
immediate and unforgiving uncooperative reaction to exploita-
tion, the strategies Punish-Once and Booster are more forgiv-
ing. Punish-Once repeats an investment of 100% until player 
B makes a return below the aspiration level of 34%. In this 
case it makes no investment for one period, thereafter returns 
to an investment of 100%. Booster is an even more toler-
ant strategy: it starts with an investment of 50%, and then 
if player B provides a return above or equal to its aspiration 
level of 67%, it moves to its second state with an investment 
of 100%. If player B subsequently makes a low return Booster 
moves back to the first state of 50% investment until B gives 
a high return again. 

We restricted player B to a set of five strategies (see Fig-
ure 5). Three non-reactive one-state automata for player B 
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Player B Strategies 

0% 

No-Return 

67% 

Fair-Return 

T (Trusting): A’s Investment   90%; D (Distrusting): A’s Investment < 90% 

Min-Return 

34% 

Fair-Reactive 

67% 

D 

D 

D 

T 

T 

0% 

T 

Min-Reactive 

34% 

D 

D 

D 

T 

T 

0% 

T 

Figure 5. Selected set of strategies for player B. For each automaton states are 
represented by circles and the initial state is indicated by the left arrow that is 
not connected to any other state. Each state determines an output, represented 
by the number inside each circle. Given an input from the opponent, automata 
may move to other states, indicated by the arrows that start from a state and 
point to the same or another state; the inputs that cause these particular moves 
are indicated by the label on each arrow. 

differ only with respect to their return rates: No-Return (0%), 
Min-Return (34%), and Fair-Return (67%). The additional 
two-state automata Min-Reactive (returning 34%) and Fair-
Reactive (67%) are responsive to player A’s decision. Both 
strategies only make their respective returns if player A’s 
investment is at or above their aspiration level, otherwise they 
return nothing. Their aspiration level was set at 90%, mak-
ing substantial investments by player A necessary to induce 
returns by player B. 

Although this set of strategies is somewhat arbitrary it 
includes important characteristics. First, there are basically 
two crucial investment rates used for the set of strategies: 
an investment rate of 100% maximizes the possible payoff 
for player A given player B’s behavior, provided B returns at 
least 34% of the trebled investment. An investment rate of 
0% is appropriate if the interaction would lead to a payoff 
below player A’s endowment. Second, there are three crucial 
return rates for player B: either player B returns nothing to 
maximize her payoff in a single period, or player B returns 
34% to give player A the minimum payoff above player A’s 
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endowment, or player B returns 67%, which leads to equal 
“putative” fair payoff allocations between both players. To 
construct the selected set of automata, the crucial investment 
rates and aspiration levels corresponding to the crucial return 
rates of player B were selected. In addition, some strategies 
incorporate a “punishment” mechanism, so that strategies for 
player A respond to low returns with low investments or, in 
case of player B, respond to low investments with low returns. 
In sum, with this small set of strategies it is possible to eval-
uate strategies’ performance in pairs of strategies A and B 
combinations, to demonstrate the strengths and weaknesses of 
particular decision mechanisms. We perform this evaluation in 
three ways as follows. 

2.3.1. Nash equilibrium 

A strategy combination forms a Nash equilibrium if the two 
strategies are mutual best replies out of the available strategy 
set.1 A best reply strategy maximizes the player’s payoff given 
the opponent’s strategy. Table I shows the expected average 
payoffs that the strategies reach against each other and indi-
cates the various Nash equilibria. Even with the small set of 
strategies defined above, many equilibria exist, which lead to a 
variety of payoff combinations as predicted by the Folk the-
orem. Player B strategies that consist of only one state can 
form equilibria that lead to efficient outcomes. In contrast, 
player A’s one-state automaton that can produce efficient out-
comes, Always-Invest, does not form any Nash equilibria. 
This suggests that, for player A strategies, it may be important 
to incorporate a “punishment mechanism” that threatens low 
returns from B. From this it can be predicted that the strat-
egies for player A require a higher degree of complexity to 
obtain efficient outcomes than do player B strategies, which 
we will test in Study 1. 

2.3.2. Evolutionary stability 

The Nash equilibrium concept for evaluating strategies for the 
IIG has the problem that the number of strategy combinations 
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representing equilibria is too large to distinguish the most 
promising strategies—9 out of 11 strategies in our restricted 
set appear in Nash equilibria. Thus the concept makes no 
narrow predictions about which outcomes people are likely 
to reach and which strategies they may employ in the IIG. 
One way to address this problem is to explore other plau-
sible and more restrictive approaches for evaluating strate-
gies such as the concept of evolutionary stability (see Bendor 
and Swistak, 1998; Maynard Smith, 1984; Maynard Smith 
and Price, 1973; Samuelson, 1997; Weibull, 1995). Because 
this concept is typically only defined for symmetric games, 
we transform the asymmetric IIG into a symmetric game (see 
Samuelson, 1997), by assuming that a strategy for the sym-
metric game is represented as a combination of a strategy 
for player A and a strategy for player B. The payoff for a 
strategy in the symmetric game is defined as the sum of the 
expected average payoffs of the two strategies of which it con-
sists. An evolutionarily stable strategy (ESS) is a best reply 
against itself, thus representing a Nash equilibrium. Further-
more, the crucial stability criterion is that if an alternative 
strategy (σ ) leads to the same payoff against the ESS as the 
ESS reaches against itself, then it is required that the ESS 
must lead to a greater payoff against the alternative strategy 
than the alternative strategy reaches against itself: 

payoff(ESS,ESS)= payoff(σ,ESS)→ payoff(ESS,σ ) 

> payoff(σ, σ ). 

In contrast to the Nash equilibrium concept, which is weak 
for indefinitely repeated games (i.e., too many strategy combi-
nations fulfill its requirements), the evolutionary stability con-
cept is strong (i.e., its requirements are difficult to fulfill). 
From our set of six player A and five player B strategies pre-
sented above, 30 combined strategies for the symmetric game 
can be composed. None of these combined strategies are evo-
lutionarily stable, because none fulfill the stability criterion. 
This result is not surprising, as it has been shown for the IPD 
that no ESS exists given a substantial continuation probability 
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(Boyd and Lorberbaum, 1987; Lorberbaum, 1994). Thus the 
ESS concept does not help us in identifying a smaller set of 
reasonable strategies for the IIG either. 

An alternative concept of limit evolutionarily stable strate-
gies (Limit ESS) appears to be more appropriate for evaluat-
ing repeated game strategies (Leimar, 1997; Samuelson, 1991; 
Selten, 1983, 1988). For Nash equilibrium strategies, multiple 
best reply strategies often exist, disqualifying the equilibrium 
strategy as an ESS. These ties in payoffs can often be bro-
ken if players in the game make errors with a small probabil-
ity, which can be called a “perturbed game” (Selten, 1983). A 
strategy is called a Limit ESS for a game (in which no errors 
occur) if it is an ESS for the perturbed game in which errors 
do occur (Selten, 1983, p. 304). Thus, to identify the Limit 
ESSs, one simply has to incorporate small errors in a game 
and identify the ESSs for this game with errors. 

When playing an indefinitely repeated game “strategy selec-
tion” errors could occur, which implies that sometimes at the 
beginning of a game (i.e. in the first period of the repeated 
game) a player selects an unintended strategy. For explor-
ing whether the above set of strategies contains Limit ESSs 
when selection errors occur, we assume that a player will acci-
dentally select an unintended strategy (at random) in 1% of 
the games. Table II shows the corresponding payoffs for each 
strategy if both players select their strategies with such small 
errors (the strategy’s payoff can be directly calculated as the 
payoff it obtains against the strategy with which it is paired 
multiplied by 0.99, plus each payoff it obtains against all 
alternative strategies it could erroneously be paired with mul-
tiplied by 0.1/n, where n is the number of alternative strate-
gies). Thus in contrast to the ESS concept, which explores the 
stability of a strategy combination compared to each alterna-
tive strategy individually, the Limit ESS concept explores the 
stability of a strategy combination compared to the whole set 
of alternative strategies simultaneously. When selection errors 
occur, the Min-Grim and Min-Return strategy combination 
represents an ESS for the symmetric version of the IIG, and 
thus a Limit ESS for the IIG without selection errors. 
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Therefore the Limit ESS concept, contrary to the Nash 
equilibrium and ESS concepts, indicates that one strategy 
combination from the selected set outperforms the others 
in terms of their stability under the occurrence of selection 
errors. These low-probability errors have the effect of breaking 
ties that were previously present between strategies’ payoffs. 
As can be seen in Table 1, when no errors occur, the strategies 
Min-Grim, Punish-Once, and Always-Invest for player A per-
form equally against four of player B’s strategies. These ties 
can be broken in favor of Min-Grim and Min-Return, when 
small selection errors occur (see Table II). 

The assumption that people both commit errors with low 
probability and also take into account the possibility that oth-
ers will commit errors when making strategic decisions is psy-
chologically very reasonable. Therefore it is plausible to use 
the Limit ESS concept to evaluate strategies: Strategies have 
to be best replies and have to be stable under the presence of 
errors such that other strategies cannot replace them. Our the-
oretical analysis demonstrated that the many strategies picked 
out by the Nash equilibrium concept could be reduced to one 
single strategy combination when the additional stability crite-
rion is imposed. However, we hesitate to draw general conclu-
sions about the strategies’ characteristics, because we started 
with a small selected set of strategies initially. Instead, we next 
turn to using evolutionary simulations to greatly extend the 
set of strategies that can be considered in our search for those 
that may underlie cooperative behavior in the IIG. 

3. STUDY 1: COOPERATIVE STRATEGIES IN THE IIG 

To find out what kinds of strategies can produce cooperation, 
that is, trust and reciprocity, in an asymmetric social situation, 
we simulated in Study 1 an evolutionary process for the IIG. In 
this simulation, a population of agents, equipped with different 
strategies, played the IIG against each other. In addition, for 
comparison, we ran a similar simulation for the IPD (with the 
payoff matrix defined in Figure 2). These simulations follow 
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the Limit ESS concept as they incorporate the idea of selec-
tion errors discussed above: during the evolutionary process, 
agents occasionally enter the population using new or altered 
strategies that differ from those already in common use. Due 
to the difference in payoff structures (asymmetric versus sym-
metric) between the IIG and IPD, it can be predicted that the 
strategies that enable cooperation for the asymmetric IIG will 
be less cooperative than those for the symmetric IPD. Specifi-
cally, we can ask whether the less-cooperative Min-Grim and 
Min-Return strategy combination identified above will also fre-
quently appear in the evolutionary simulations. 

3.1. Method 

3.1.1. Representing strategies 

The finite automata for strategies were represented as vectors. 
Each automaton’s state requires three elements of the vector, 
one for the output and two to identify the next states that 
can be moved to depending on the dichotomous input. For 
the IIG, the output was restricted to multiples of 10 ranging 
from 0 to 100 for simplification. Automata for the IPD have 
two possible outputs, “Cooperate” or “Defect”. In addition, 
automata for the IIG have an aspiration level ranging from 
0 to 100 for categorizing the opponent’s decision as “Trust” 
or “Distrust” for player A’s investments or as “Reciprocity” or 
“Exploitation” for player B’s returns. Each automaton in the 
IIG or the IPD also specifies an initial state, and all automata 
were restricted to a maximum of two states; thus two-state 
IIG automata were represented by an eight-element vector 
and those for the IPD used seven elements. 

3.1.2. Simulating an evolutionary process 

To simulate the evolutionary process, we used a genetic algo-
rithm (Goldberg, 1989; Michalewicy, 1996; Mitchell, 1996) as is 
becoming common in evolutionary game theory (e.g. Axelrod, 
1987; Hoffmann, 1999, 2001). Agents compete against each 
other in pairs. In the first generation, for each of the 100 agents 



88 J ¨ ORG RIESKAMP AND PETER M. TODD 

in the IIG two automata were randomly generated, one for the 
player A role and one for the player B role, whereas in the IPD 
only one automaton was needed for each agent. The automata 
outputs, states, and aspiration levels were drawn with equal 
probability from the set of possible values. At every genera-
tion, each agent in the IIG played 50 games in each role (100 
games total), and each agent in the IPD played 50 games, with 
a continuation probability p = 0.99 at each period. For each 
game, an opponent agent was drawn randomly with the con-
straint that an agent never played against itself or twice against 
another agent. Each agent’s fitness was defined as the average 
per-period payoff (averaged across the different lengths of the 
games) that the agent obtained for all games it played. 

Based on their fitness, agents were selected for the next 
generation via a tournament selection procedure (see Goldberg 
and Deb, 1991; Michalewicy, 1996). Each agent took part in 
six different “tournaments” (pooled comparisons) of six ran-
domly-chosen agents. From each of the 100 tournaments, the 
agent with the highest fitness (averaged over the two roles 
in the IIG) was selected for the next generation. If multiple 
agents tied for the highest fitness, one was randomly selected. 
To create population variation after the selection procedure, 
all agent automata were randomly put together in pairs, and 
then with a probability of p = 0.80 each pair had some of 
their vector elements swapped via a two-point crossover pro-
cedure (separately for player A and player B in case of the 
IIG) as follows: if a crossover occurred, two positions of the 
vectors representing the automata were determined randomly 
with equal probability, and all vector elements between these 
two positions were interchanged between the two “parent” 
strategies. After the crossover procedure, automata were fur-
ther modified through a mutation procedure that could alter 
each vector element with a certain probability. This muta-
tion probability depended on the automata’s number of states 
such that there was an overall probability of p = 0.33 that 
at least one element of the automaton was mutated (e.g., for 
an automaton with two states for player A in the IIG this 
implied a per-element mutation probability of p = 0.049). If  
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a mutation occurred, a new output value or state was drawn 
with equal probability from the set of possible outputs and 
states. For the aspiration level of the automata for the IIG, 
new values were drawn from a normal distribution with the 
mean equal to the old aspiration level2 and a standard devia-
tion of 5% points. 

This genetic algorithm was run 100 times, each for 1000 
generations. Since automata with different numbers of states 
can still be equivalent in terms of their behavioral output, 
after every 10 generations all evolved automata (each hav-
ing a maximum of two states) were transformed to their cor-
responding minimal automaton, that is, the automaton out 
of the set of equivalent automata with the minimum num-
ber of states (Hopcroft and Ullman, 1979). The last (1000th) 
generation was analyzed as a snapshot of where the ongoing 
evolutionary process was headed. Because of mutation and 
crossover, the last generation always contains at least a few 
low-performing strategies in addition to the high-performing 
ones of interest. These ineffective strategies were screened out 
by continuing the evolutionary selection process alone for 200 
further generations (without crossover or mutation), yielding 
the final population of strategies that we evaluated. 

3.2. Results 

3.2.1. Characteristics of the evolutionary process 

The evolutionary dynamics varied substantially across the 
different runs for the IIG, but some general patterns can be 
identified. In the beginning of the evolutionary process, the 
populations quickly evolved to one-state automata for the IIG: 
Never-Invest for player A and No-Return for player B, which 
together lead to a payoff of around 10 for each player. This 
configuration is often kept for long periods (hundreds of gen-
erations) until the population suddenly changes, frequently 
switching to a Min-Grim and Min-Return strategy combina-
tion. This new pattern, providing efficient payoffs of around 12 
and 28 for A and B, respectively, can also remain stable for a 
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long period. Following this, another population transition may 
lead back to the Never-Invest and No-Return strategy combi-
nation, and so on. Figure 6 shows the average payoffs obtained 
in one such run of the evolutionary process. During the first 450 
generations, the payoff for each player is around 10, after which 
payoffs increase to 12 and 28 when the population evolves to 
the Min-Grim and Min-Return strategies. 

For the IPD, the picture is different. At the beginning of 
the evolutionary process Always-Defect takes over the whole 
population, leading to payoffs of 10. In all runs this configu-
ration does not change substantially; in other words, in none 
of the runs did the evolutionary process lead to the develop-
ment of cooperative strategies producing efficient outcomes.3 

3.2.2. Strategies evolved over the course of evolution 

Because of the variation across runs for both the IPD and 
IIG, we now turn to an analysis of the evolved automata of 
the last (1000th) generation. Since the strategy population in 
the 1000th generation is the result of an evolutionary process 
of one single run, each population is independent of all other 
populations, which is beneficial for statistical comparison. In 
81 out of the 100 runs for the IIG, the predominant strat-
egies, defined as those strategies that were applied by more 
than 50% of the agents in a population, in the last generation 
led to inefficient outcomes (payoffs of 10 for both players). In 
the other 19 runs, the predominant strategies led to efficient 
payoffs of around 12 for player A and 28 for player B. Due 
to the restriction of investment and return rates to multiples 
of 10%, the minimum amount above the original endowment 
that player A could obtain was 12. 

There was clear convergence on the strategies used in the 
efficient and inefficient IIG outcome cases, respectively. In 
all 81 runs with inefficient outcomes, the agents always used 
Never-Invest and No-Return. For each of the 19 runs with 
efficient outcomes, the predominant strategy for player A was 
Min-Grim with an average aspiration level of 33% (SD = 
4.4%). In 14 out of the 19 runs, the Min-Grim strategies were 
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Figure 6. An example run of the simulated evolutionary process for the 
repeated IG in study 1. Figure 6A shows the strategies’ average payoffs for 
player A and player B. Figure 6B shows the proportion of the Never-Invest and 
Min-Grim strategies for player A and the No-Return and Min-Return strategies 
for player B in the population. 

paired with the Min-Return strategy for player B, while the 
other five runs had different two-state automata for player 
B. The behavior of these alternative strategies is quite simi-
lar to Min-Return as they always return 40% of the trebled 
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investment when a substantial investment is made by player 
A, and only in the case of very low investments do these strat-
egies move to a second state with lower returns. These results 
mostly match the strategies found with the Limit ESS concept 
earlier. 

For the IPD, the evolutionary process converged strongly. 
In all 100 out of the 100 runs, the population of agents 
applied the Always-Defect strategy, leading to an inefficient 
outcome with payoffs of 10. Thus, the proportion of efficient 
outcomes of 19% for the IIG is significantly larger than the 
proportion of 0% efficient outcomes in the IPD [χ2(1,N  = 
200) = 20.99, p = .001; corresponding to a large effect size of 
h= 0.90 according to Cohen, 1988]. 

3.3. Summary of Study 1 

Study 1 demonstrates that the strategies that most frequently 
evolve for the IIG and the IPD lead to inefficient outcomes. 
The strategies that produced the inefficient outcomes for both 
games were very similar as they consist of only one “uncoop-
erative” state: the Never-Invest and No-Return strategies for 
the IIG, and the Always-Defect strategy for the IPD. 

The important difference between the games is that for the 
IIG a substantial proportion of runs were observed where 
the evolutionary process led to a population of cooperative 
strategies in the last generation, whereas for the IPD the 
evolutionary process never led to cooperative strategies. This 
is surprising as one would expect cooperative strategies like 
TFT to evolve, considering the results of previous studies (e.g. 
Axelrod, 1984). 

Although for the IIG the proportion of the evolutionary 
processes that led to efficient outcomes was much larger than 
for the IPD, the strategies that enabled the efficient outcomes 
for the IIG were not very cooperative: the Min-Grim strategy 
for player A starts with a cooperative decision, but the strat-
egy responds to a single low return from player B by switch-
ing to no investment for all following periods, eliminating 
the possibility for any further cooperation. Thus Min-Grim 
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is an unforgiving strategy and therefore it is less cooperative 
than strategies such as TFT, which always allows a return to 
a cooperative state at the opponent’s initiative. Furthermore, 
even when the evolutionary process led to an efficient out-
come in the IIG, the payoff allocation between players A and 
B was extremely skewed in B’s favor. Equal “putative” fair 
payoff allocations were not observed. 

4. STUDY 2: INCREASING STRATEGY COMPLEXITY 

In Study 2 we explored the impact of allowing greater poten-
tial strategy complexity in the two games. In Study 1, the auto-
mata representing the strategies were restricted to a maximum 
number of two states, yielding strategies that are rather sim-
ple.4 For the IPD it has been shown that increased poten-
tial complexity of strategies could alter what evolves, such as 
strategies that take mistakes of the opponent into account 
(Lindgren, 1991) or are otherwise able to exploit opponent 
strategies (Axelrod, 1987). Therefore it is reasonable to con-
clude that the restriction of strategy complexity to two states 
in Study 1 could have promoted the emergence of simple 
strategies like Min-Grim. These strategies might be outper-
formed by more sophisticated and “complex” strategies when 
the restrictions on the number of states is relaxed. In addition, 
the restriction to strategies with a maximum of two states 
might also have prevented the emergence of cooperative strat-
egies for the IPD that require more than two states (unlike 
TFT, which requires only two states). Thus, in Study 2 we 
aimed to find out whether more memory (and hence more 
information) along with more computation could allow the 
more frequent evolution of cooperative strategies. 

4.1. Method 

We made two changes to the simulations used in Study 1. 
First, the maximum possible number of states for a strat-
egy was doubled from two to four. Second, to have the same 
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overall probability of a mutation occurring in an automaton, 
the per-element mutation rate had to be reduced (i.e. for a 
four-state automaton the mutation probability had to be p = 
0.028 for each parameter in the strategy). 

4.2. Results 

As in Study 1, the evolutionary dynamics differed substan-
tially across runs. Here we will report only the predominant 
strategies in the last generation of the evolutionary process 
with 1000 generations. 

4.2.1. Strategies evolved for the IIG 

For the IIG, the increase in the number of allowed states did 
not change the outcome of the evolutionary process substan-
tially. In 71 out of 100 runs (compared to 81 in Study 1), the 
evolutionary process led to an inefficient result with a payoff 
of around 10 for both players in the last generation. For all 
of these inefficient outcomes, player A used Never-Invest. For 
player B, the strategy No-Return was found in 55 of these 71 
runs, with variants of No-Return in the remaining 16. These 
variants, despite consisting of more than one state, did not 
differ substantially from the No-Return strategy: all of them 
did not make a return if a substantial investment was made, 
but increased their return if they received a low investment. 

Efficient outcomes (with payoffs 12 and 28 for A and B) 
arose in 23 out of the 100 runs. Min-Grim was used by player 
A in all these 23 runs, with a mean aspiration level of 34% 
(SD = 4%). For player B, Min-Return was used in 11 out of 
23 runs; in the other 12 runs, strategies with a higher num-
ber of states were applied. However, similar to Min-Return, 
these strategies always make the “minimal” return of 40% 
when player A makes a substantial investment (giving player 
A the minimum payoff above his endowment, i.e. 12), but 
make no or very small returns if a very low investment was 
made. In sum, when the evolutionary process led to an effi-
cient outcome, the evolved strategies were very similar to the 
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Min-Grim and Min-Return strategy combination found in 
Study 1. In the remaining six of the 100 runs almost effi-
cient outcomes were produced with an average payoff of 33 
for both players (12 for player A and 21 for player B). How-
ever, the populations consisted of rather mixed strategies. 

In contrast to the IIG, the increase of potential strategy 
complexity had a strong impact on the evolutionary outcomes 
for the IPD. The number of inefficient outcomes in the last 
generation arising from predominant use of Always-Defect 
decreased to 74 out of 100 runs (compared to 100 ineffi-
cient runs in Study 1). In the remaining 26 runs, the strate-
gies almost produced efficient outcomes with mean payoffs of 
around 19 (SD = 1.6). The strategy TFT was not observed 
in any of these near-efficient runs. Instead in 22 runs the 
strategies consist of four states and in four runs the strate-
gies consist of three states. Altogether 18 distinct strategies 
were observed, all sharing some similarities: most of them 
(16) always defect in the first period. Seven of them stay in 
the first state and continue defecting as long as the other 
strategy cooperates, thereby exploiting unconditional coopera-
tive strategies. Fourteen defect in the second period when the 
other strategy also defected in the first period. However, if the 
opponent strategy defects in the first and the second period 7 
of the strategies cooperate in the third period. Moreover, 15 
of the 18 strategies entail a cooperative state like TFT, so that 
the strategy cooperates as long as the opponent cooperated in 
the last period. Only two of the 18 strategy entail a termi-
nal defecting state like all Grim strategies, in which the strat-
egy continues to defect until the end of the game regardless 
of the opponents’ decision. To illustrate one of the strategies, 
Figure 7 shows the strategy that was observed most often in 
the last generation of the evolutionary processes (in 4 out of 
22 efficient runs), labeled Cautious TFT. The strategy behaves 
very similarly to the standard TFT strategy, with the differ-
ence that it begins by defecting in the first period. Then it 
always cooperates if the opponent cooperated in the previous 
period. After a maximum of four defecting decisions of the 
opponent the strategy will cooperate for at least one round. 
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Figure 7. A strategy, named cautious TFT, which was predominant in the effi-
cient runs for the indefinitely repeated PDG in Study 2. 

Overall, the 29% proportion of runs with efficient outcomes 
for the IIG did not differ significantly from the 26% pro-
portion of efficient outcomes for the IPG [χ2(1,N  = 200) = 
0.23, p= .64; h= 0.07, which is smaller than what is commonly 
considered as a small effect size according to Cohen, 1988]. 

4.3. Summary of Study 2 

We found that increasing the potential complexity of strate-
gies increased the frequency of efficient outcomes for the IPD, 
but had little effect for the asymmetric IIG. On the one hand 
the proportion of IIG runs where the strategies in the 1000th 
generation produced efficient outcomes did not differ from the 
proportion observed in Study 1. On the other hand the IIG 
strategies that evolved did not differ substantially from the 
strategies observed in Study 1: basically the same strategies 
produced the efficient and the inefficient outcomes. 

The larger potential complexity of the strategies had a 
strong effect on the evolutionary process for the IPD, as a 
substantial proportion of efficient outcomes were observed in 
the last generation. The strategies that produced the coop-
erative outcomes differ from TFT, consistent with previous 
results (Axelrod, 1987; Lindgren, 1991), mostly by starting 
with an uncooperative decision in the first period. Some of 
them can thereby exploit unconditionally cooperative strate-
gies that cooperate regardless of whether the other strategy 
cooperates or defects. However, most strategies also include 
a mechanism to establish cooperation, so that after some 
periods the strategies cooperate when the opponent strategy 
also cooperates. Thus, the increased potential complexity of 
the strategies allowed them to incorporate mechanisms both 
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to exploit others and to establish mutual cooperation. These 
results suggest that in a symmetric bargaining situation where 
exploitation is possible, increased strategy complexity may to 
be an advantage because it enables more devious exploits. On 
the other hand, in an asymmetric bargaining situation like the 
IIG, where player A has no possibility to exploit the oppo-
nent, greater strategy complexity may be of no use. 

5. STUDY 3: DIFFERENCES BETWEEN THE IIG AND THE IPD 

Studies 1 and 2 show that there are substantial differences 
between the kinds of evolved strategies that produce efficient 
outcomes for the IIG and the IPD. What causes these differ-
ences? One distinction between the two games is that the two 
players make decisions sequentially in the IIG, whereas they 
make decisions simultaneously in the IPD. A second distinc-
tion is that the players in the IIG have a continuum of pos-
sible decisions, whereas they make dichotomous decisions in 
the IPD. A third distinction between the IIG and the IPD is 
of course that the payoff matrix is asymmetric for the former 
and symmetric for the latter. To test whether these distinc-
tions cause differences in the evolved cooperative strategies, 
we modified the IIG by removing the differences between 
the games in two steps. In the first condition the IIG was 
modified such that the players had to choose between two 
dichotomous decisions simultaneously. In the second condi-
tion the IIG was further modified to remove the asymmetry 
of the payoff matrix. The interesting question is what distinc-
tion causes a different evolutionary process for the IIG com-
pared with the IPD. 

5.1. Method 

In Study 3 we conducted simulations in two distinct condi-
tions. In the first simultaneous and dichotomous IIG condition, 
we ran an evolutionary process for the IIG as done in Study 
1, but with two important changes: both players had to make 
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their decisions simultaneously. This has a major impact on 
player B’s decision process. Whereas in the sequential game, 
player B could take player A’s decision (investment) in the 
present period into account when making a return decision, in 
the simultaneous game player B (like player A) can only con-
sider decisions of previous periods. Therefore, in these simula-
tions the automata for player B could only change their states 
(if at all) in response to player A’s investments in the previ-
ous period, without knowing player A’s decision in the present 
period. In addition we changed the IIG so that both players 
only have two decision alternatives. Player A can either invest 
nothing or his entire endowment (i.e. a 100% investment) and 
Player B can either return nothing or 34% of the investment. 
If player A invests nothing both players receive a payoff of 
10. In contrast, if player A invests all, the two players’ payoffs 
depend on player B’s decision: If B returns nothing A earns 
nothing and B receives a payoff of 40. If B returns 34%, A 
receives 12 and B receives 28. 

In the second symmetric IIG condition we ran an evo-
lutionary process for the IIG as in the simultaneous and 
dichotomous condition, but with one additional change to the 
modified IIG: if player A decides to make no investment and 
player B decides to make a return, then A receives a payoff of 
40 and B receives 0. This makes the game almost identical to 
the IPD represented in Figure 2, with the remaining difference 
that if both players “cooperate”, that is when player A invests 
and player B makes a return, player A receives 12 and player 
B receives a payoff of 28 instead of an equal payoff of 20 like 
in the IPD. However, if the payoffs of both games were trans-
formed into ranks according to the player’s payoff, this mod-
ified IIG becomes identical with the IPD. 

5.2. Results 

In the simultaneous and dichotomous IIG condition the strat-
egies of the population in the last generation produced effi-
cient outcomes in 14 of 100 runs. This proportion does 
not differ significantly from the 19% proportion of efficient 
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outcomes observed for the IIG in study 1 [χ2(1,N  = 200) = 
0.91, p  = .45; h = 0.14, which is lower than a small effect 
size according to Cohen, 1988]. Strategies similar to those in 
Study 1 were observed: of the 86 inefficient runs, for player 
A the Never-Invest strategy was observed in 85 runs and for 
player B the No-Return strategy was observed in 68 runs. 
Likewise for the 14 efficient runs, in 13 runs the Min-Grim 
strategy was observed for player A and in six runs the Min-
Return strategy was observed for player B. In the remaining 
runs variants of the Min-Return strategy were observed for 
player B, which make a return in the first period and continue 
doing so as long as the opponent makes an investment. 

When we also made the IIG symmetric, along with dichoto-
mous and simultaneous decisions, the proportion of efficient 
outcomes in the last generation of the evolutionary process 
decreased substantially, so that in none of the populations in 
the last generation were efficient outcomes observed. This pro-
portion differs substantially from the proportion of 19% effi-
cient outcomes observed for the IIG in Study 1 [χ2(1,N  = 
200) = 20.99, p = .001; h = 0.90, corresponding to a large effect 
size according to Cohen, 1988]. In all 100 runs the strategies 
Never-Invest and No-Return produced the inefficient outcomes. 

5.3. Summary of Study 3 

In the simultaneous and dichotomous condition of Study 3 
the proportion of efficient outcomes was similar to the pro-
portion of efficient outcomes in Study 1. Moreover the strate-
gies that evolved for the dichotomous and simultaneous IIG 
do not differ from the observed strategies in the sequential 
game with continuous decision alternatives. In contrast, when 
the asymmetry is also removed from the game by making the 
ranks of the player’s payoffs for the IIG identical with the 
ranks of players’ payoffs in the IPD, the evolutionary pro-
cess of the modified IIG becomes non-distinguishable from 
the evolutionary process of the IPD. Therefore we can con-
clude that the different cooperative strategies observed for the 
IIG compared to the IPD are mainly due to the difference 
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in the payoff structure of the two games rather than to the 
sequential decision process or the continuous decision alterna-
tives of the IIG. 

In the first condition with the modified simultaneous and 
dichotomous form of the IIG, the risk for player A of trust-
ing player B is similar to the risk of cooperating in the 
IPD, namely, exploitation by the other player. However, the 
opportunities for overcoming this risk differ in the two games 
because of the difference in symmetric versus asymmetric pay-
offs. Whereas either player who exploits the other in the 
IPD can compensate the exploitation through later coopera-
tion, this compensation is not possible in the IIG: player B, 
who can exploit, cannot “make peace” unless player A tries 
to do so first through another exploitable investment. When 
we allow player B to make such a conciliatory gesture in 
the “symmetric IIG” condition, “returning” 40 to A when A 
has invested nothing, this allows a cooperative situation to 
reemerge, showing the benefit of symmetric payoffs for recon-
ciliation. 

6. DISCUSSION 

In this paper, we have asked whether individuals’ coopera-
tive decision strategies in an asymmetric social relationships 
represented by the IIG differ from those used in symmetric 
relationships represented by the IPD. This question is par-
ticularly important because of the prevalence of asymmet-
ric social relationships: individuals’ positions in relationships 
are often hierarchical and not interchangeable (remember the 
employer and employee in the introduction). If asymmetry has 
an impact on decision strategies, then the predominant use of 
the symmetric IPD as a general model for social interactions 
is not justified, and an extension to models using asymmetric 
games like the IIG appears necessary. The results of the stud-
ies reported here support just such a conclusion. 
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6.1. Game-theoretic concepts 

We have illustrated how three different game-theoretic con-
cepts can be used to evaluate repeated game strategies. Even 
with a small selected set of strategies we could show that 
the Nash equilibrium concept is too weak because too many 
strategies represent equilibria. One way to tackle the resulting 
equilibrium selection problem is to require additional abilities 
of the strategies. An important advantage for any strategy is 
persistence in the long run, evolutionarily speaking. This idea, 
captured in the ESS concept, forms a persistent population 
that cannot be “invaded” by any alternative strategy. How-
ever, the ESS concept is too strong: among our selected set 
of strategies for the IIG no uninvadable ESS could be found. 
The third concept of Limit ESS (Selten, 1983, 1988) is based 
on the reasonable assumption that people make small errors 
in their decision processes. Using this concept, we were able to 
distinguish a strategy combination that is an evolutionary sta-
ble strategy when errors occur, namely Min-Grim with Min-
Return, which together allow cooperation. 

6.2. Evolutionary simulations 

Only a limited number of strategies can readily be assessed 
in terms of game-theoretic equilibrium concepts. With evo-
lutionary simulations, however, a large set of strategies can 
be evaluated. In Study 1, where automata were restricted 
to a maximum of two states, the evolutionary process typi-
cally led to two outcomes for the IIG. First and most fre-
quently, inefficient outcomes were obtained by the strategies 
Never-Invest and No-Return. Second, the less common effi-
cient outcomes were usually associated with Min-Grim and 
Min-Return. The IPD differed from the IIG as only ineffi-
cient outcomes were obtained in the last generation, using the 
always-defect strategy. 

What is the reason for the frequent emergence of the Min-
Grim strategy in the IIG? One strength of Min-Grim is that 
it can only be exploited once, after which it puts itself in 



102 J ¨ ORG RIESKAMP AND PETER M. TODD 

an unexploitable position by no longer investing. However, 
this advantage is also a disadvantage, because it disables Min-
Grim from ever obtaining efficient outcomes again once it has 
moved to its inefficient non-investing decision (i.e. its second 
state). Therefore, the Min-Grim strategy, while being as sim-
ple as TFT, is less cooperative. The crucial aspect of the IIG 
seems to be that when player B defects and exploits A, it 
is only possible to reestablish cooperative outcomes again if 
player A—the exploited, not the exploiter—makes a risky out-
lay. In this respect, the asymmetric IIG differs from the IPD. 
In the IPD, a player that defects and causes an uncooper-
ative situation can reinitiate cooperation through a coopera-
tive decision in a subsequent period. This cooperative gesture 
will give the player a lower payoff than the other player if 
the other defects. In this way, a gain by an exploitative deci-
sion can be compensated by creating the possibility for a bal-
ancing loss (and relative gain for the other player) in another 
period. In contrast, in the IIG the gain from an exploitative 
decision by player B is not compensated by a loss for player B 
when returning to a cooperative interaction. Similarly, the loss 
for player A resulting from player B’s exploitation will not 
be compensated when the players again cooperate. Further-
more, in order to return to the cooperative interaction, player 
A has to again make a high investment and bear the risk of 
a repeated exploitation and hence additional loss. In sum, this 
burden of trust being placed entirely on one player (A) as a 
consequence of the asymmetric payoff structure seems to be 
the crucial difference between the IIG and the IPD. 

Player A in the IIG thus faces a dilemma: He has to avoid 
being exploited, yet he can only increase his payoff through 
substantial investment, which would again make him vulner-
able to exploitation. In contrast, the strategic situation for 
player B appears to be quite simple: She merely has to make a 
decision about the rate of returns. Promoting high investment 
does not seem to be particularly important, which explains 
the low variance of the strategies obtained for player B across 
all studies. 
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Study 2 showed that allowing greater strategy complexity 
had no substantial effect on the strategies that evolved for 
the IIG, though it did enable the evolution of more complex 
strategies for the IPD, which led to efficient outcomes. When 
the complexity of the strategies was increased, the propor-
tion of evolutionary processes that led to efficient outcomes 
was the same for the IIG and the IPD. However, the TFT 
strategy was not observed in any evolutionary process of the 
IPD. This might be because the simple TFT strategy for the 
IPD is not only vulnerable to mistakes (Lindgren, 1991), but 
also unable to exploit naı̈ve, cooperative strategies. The more 
complex IPD strategies that evolved in Study 2 are capable 
of both cooperating with other strategies and exploiting them 
when possible. In contrast, for the asymmetric IIG, extra com-
plexity does not help player A to cooperate without being 
exploited, nor does it help B to figure out when she is play-
ing with an overly-cooperative A who can be exploited with-
out fear of perpetual defection. 

Study 3 demonstrated that the sequential decisions and the 
continuous decision alternatives of the IIG do not affect the 
kind of strategies that evolve for the game. This could be 
explained by the fact that the order in which the decisions 
are made should only be relevant for player B (because B 
may or may not take A’s decision into account). But because 
the strategies that typically evolve for player B are very sim-
ple (No-Return or Min-Return, with only one state) and 
do not take into account any move on A’s part, it actu-
ally makes no difference to them whether decisions are made 
sequentially or simultaneously. However, when the asymmetric 
payoff structure is removed from the IIG, the evolutionary 
process changes dramatically and becomes indistinguishable 
from the evolutionary process of the IPD. Thus, it is the 
asymmetry of the decision situation, rather than its sequen-
tiality or continuous decision alternatives, that makes the IIG 
a unique challenge, distinct from the IPD. 
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6.3. Fair allocations 

In almost all simulations for the IIG in which an efficient out-
come evolved, the players obtained unequal payoffs. Player A 
only obtained a little more (12) than his endowment whereas 
player B got almost all (28) of the produced surplus. This 
result was expected from our theoretical analysis because the 
Fair-Grim and Fair-Return strategy combination (with equal 
payoffs) is weakly dominated by the Min-Grim and Min-
Return strategy combination (with unequal payoffs), receiving 
a lower or equal total payoff. The reason for this is that Grim 
strategies for player A that apply a low aspiration level for 
classifying player B’s return as “reciprocating” earn a higher 
payoff than other Grim strategies with a higher aspiration 
level, because the former cooperate with a wider range of 
player B strategies. In other words, Grim strategies with a 
lower aspiration level than Fair-Grim “underbid” that strategy 
and thereby undermine the “norm” of high returns that Fair-
Grim promotes. 

This process resembles a common good problem (see Led-
yard, 1995) in which the common good is represented by 
high returns of player B. If players A restrict themselves to 
taking only high returns (like Fair-Grim does), the common 
good of high returns for player A will be maintained in the 
long run; therefore, this self-restriction is socially preferable. 
However, for each player A, it is individually rational also 
to accept low returns in every period, rather than ending the 
interaction with the current B partner and getting nothing. If 
a large number of A players make this individually rational 
decision, it also becomes individually rational for each player 
B to lower her return rate, and the original equitable division 
unravels to unequal payoffs. 

6.4. Experimental evidence 

How do the results of our evolutionary simulations relate to 
experimental evidence? There is a growing body of experi-
mental findings on behavior in asymmetric games like the 
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ultimatum game (G¨ uth, et al., 1982; Ochs and Roth, 1989), 
or the trust game (G¨ uth et al., 1997). In the sequential “one-
shot” trust game each player has two choice alternatives. The 
first player can distrust the second player, which leads to a 
medium payoff for both players. Or the first player can trust 
the second, which produces a larger payoff for both players if 
the second player reciprocates the trusting decision. However, 
if the second player exploits the first’s trust, the first player 
earns nothing and the second player receives the highest pay-
off in the game. The majority of participants (82%) in the role 
of the first player chose not to trust their opponent, and the 
majority of participants (71%) in the role of the second player 
chose to exploit their opponent, which is consistent with the 
game-theoretical prediction. The relatively low magnitude of 
cooperation might be explained by the fact that the game was 
not repeated. 

Rieskamp and Gigerenzer (2005) studied the IIG experi-
mentally and observed a large magnitude of cooperation: the 
average mutual payoff received was 34 compared to the possi-
ble maximum of 40. However, this cooperation did not lead 
to equal payoffs for both players. Consistent with our evo-
lutionary simulations, participants in the role of player B 
reached a higher average payoff compared to player A par-
ticipants (19 versus 15). Thus some of the participants real-
ized the power of the player B role and used it to obtain 
a higher payoff. However, participants often also made deci-
sions that led to equal payoffs for both participants, thereby 
following fairness principles (Deutsch, 1975). Additionally 
Rieskamp and Gigerenzer (2005) showed that a few surpris-
ingly simple heuristics could account for individuals’ decisions 
in the IIG. The strategy that best modeled participants’ deci-
sions in the role of player A resembled the Grim strat-
egy found in out evolutionary simulations. Like Grim, this 
observed strategy starts with an investment of 100% and 
maintains this level as long as a return above 34% is made. 
In contrast to Grim, this strategy stays at 100% investment 
if player B occasionally makes a low return; but if player B 
repeatedly makes a low return, the strategy moves like Grim 
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to a state with no investment and stays in this state for the 
remainder of the game. The strategies that best modeled par-
ticipants’ decisions in the role of player B simply made a con-
stant return of either 50 or 67%. Thus overall these experimen-
tal results partly matched our simulation results, supporting 
Min-Grim and (nearly) Min-Return as strategies that can be— 
and often are—used to achieve stable cooperation in the IIG. 

6.5. Conclusions 

Recently several authors have argued that the decision strate-
gies people use depend on the social domains they encounter 
(Bugental, 2000; Fiske, 1992; Hirschfeld and Gelman, 1994). 
Bugental (2000), for instance, proposes a distinction between 
five domains including hierarchical and reciprocity-based rela-
tionship. One important dimension separating domains is the 
structures of decision consequences or payoffs. A reciprocity-
based domain might be characterized by a symmetric pay-
off structure, whereas a hierarchical power domain might be 
characterized by an asymmetric payoff structure. Following 
this reasoning, one could argue that the rules used in each 
domain could be shaped (e.g. through cultural evolution or 
learning) by the different decision structures that apply in 
each. In a reciprocity domain with symmetric decision con-
sequences, a TFT-like strategy could be expected to emerge. 
In contrast, in a hierarchical power domain with asymmet-
ric decision consequences like the IIG situation, a Grim-like 
strategy that is less cooperative is more likely to appear. How-
ever, these conclusions should be taken with some caution, 
since we have only examined one particular asymmetric game 
and some of its variants. This leaves open the possibility 
that in other asymmetric interactions strategies could emerge 
that are as cooperative as their counterparts in symmetric 
interactions. Nevertheless, in moving attention away from the 
often-studied symmetric interactions embodied in the IPD to 
asymmetric interactions, captured in the IIG, we have found 
a different set of strategies that may underlie many of the 
social interactions in which humans engage. These strategies 
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might often be not as “nice” as those that have been stud-
ied for symmetric interactions: even when efficient high-payoff 
outcomes are produced, the division of resources is unfairly 
skewed in one agent’s favor, reflecting the original asymmetry 
that the two parties brought to the interaction. 

Furthermore, the efficient (if unequal) cooperative out-
comes in an asymmetric situation such as the IIG are frag-
ile. Once cooperation breaks down through an instance of 
exploitation, there is no good way for it to return. Player 
B cannot be contrite, because there is no way to signal to 
player A the intention to return to cooperative play if A 
does not first trustingly invest. Yet why should A do so and 
risk being exploited further if there is no evidence of con-
trition first forthcoming from B? Imagine the employee who 
has frequently worked overtime, trusting that his effort will 
be reciprocated with a bonus from his employer. After never 
being rewarded for this extra investment, should the employee 
spend any additional effort again at the next opportunity? 
Our results lead us to predict that cooperation can emerge 
in symmetric and asymmetric social interactions, but that it 
is more vulnerable to collapse in asymmetric interactions. 
If only one individual has the possibility of exploiting the 
other individual, it can be predicted that exploitation becomes 
more destructive. And when efficient outcomes do appear, one 
player is likely to obtain most of the surplus. Thus, despite the 
picture of even-handed and honorable cooperation that often 
emerges from studies using the symmetric Prisoner’s dilemma, 
the situation that arises in commonly-occurring asymmetric 
relationships may be as cooperative, but less equitable. 
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NOTES 

1. Here we restrict our discussion to pure strategies—meaning that play-
ers use one strategy exclusively. However, the definition also holds for 
mixed strategies. A mixed strategy is a probability distribution over 
the set of pure strategies, which defines the probability with which 
each of the pure strategies is selected by the player. 

2. A modification of the aspiration level has a large impact on the 
automaton’s behavior, as it determines, for all states, to which state 
the automaton moves next depending on the opponent’s decision. 
Because of this strong effect, the mutation function used a normal 
distribution with the old aspiration as the mean, thereby only chang-
ing the aspiration levels moderately. 

3. In addition, we ran simulations for longer periods, but this did not 
lead to substantially different results. For instance, we ran one single 
evolutionary process for the IIG for 100,000 generations and deter-
mined for each 100th generation whether the strategies of the popula-
tion produced an efficient outcome, that is a mutual payoff of at least 
38. In 28.7% of these 1000 sampled generations the outcome was effi-
cient, which is similar to the proportion of efficient outcomes when 
comparing the 100 independent runs with 1000 generations that we 
focus upon in the main text. Likewise we ran one single evolutionary 
process for the IPD for 100,000 generations and determined for each 
100th generation whether the strategies of the population produced 
an efficient outcome (at least 38). In none of these generations were 
efficient outcomes observed, which again is similar to results obtained 
for the last 1000th (final) generation of the 100 independent runs we 
focus upon in the main text. 

4. Here we assume that the number of states of the minimized autom-
aton can be used as an indicator of an automaton’s complexity: the 
higher the number of states, the more information an automaton can 
store, thus providing a larger memory with which to instantiate more 
complex strategies (see also Abreu and Rubinstein, 1988). 
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	THE EVOLUTION OF COOPERATIVE STRATEGIES FOR ASYMMETRIC SOCIAL INTERACTIONS 
	ABSTRACT. How can cooperation be achieved between self-interested individuals in commonly-occurring asymmetric interactions where agents have different positions? Should agents use the same strategies that are appropriate for symmetric social situations? We explore these questions through the asymmetric interaction captured in the indeﬁnitely repeated investment game (IG). In every period of this game, the ﬁrst player decides how much of an endowment he wants to invest, then this amount is tripled and passe
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	1. INTRODUCTION 
	The study of cooperation between self-interested individuals has been dominated by a focus on symmetric games. But social relationships are often imbalanced. Consider for instance the relationship between an employee and employer or a patient and a physician. In the ﬁrst case, an employee might have frequently worked overtime trusting that his effort will be reciprocated, but the employer may or may not ultimately reward this extra effort. Individuals must frequently deal with others in 
	The study of cooperation between self-interested individuals has been dominated by a focus on symmetric games. But social relationships are often imbalanced. Consider for instance the relationship between an employee and employer or a patient and a physician. In the ﬁrst case, an employee might have frequently worked overtime trusting that his effort will be reciprocated, but the employer may or may not ultimately reward this extra effort. Individuals must frequently deal with others in 
	-
	-

	positions at a different level of power, making their interactions asymmetric. Whereas the two individuals in a symmetric interaction face the same decision alternatives, in an asymmetric interaction the decision alternatives differ for the two parties. Do these commonplace asymmetric interactions support or inhibit the emergence of cooperation? 
	-


	The main goal of the present study is to explore whether decision strategies exist that can reliably lead to ongoing cooperation in an asymmetric interaction, and see whether such strategies differ from those that are appropriate for cooperation in a symmetric interaction. To achieve our goal, we ﬁrst narrow our attention to a particular simple form of asymmetric social exchange, captured in the (IG—Berg et al., 1995). This game, sometimes also labeled the , has so far been studied experimentally, but here 
	-
	investment game 
	trust game
	-
	-
	-
	-
	-

	The results of such evolutionary simulations can be employed to help explain how cooperation can develop and to illustrate strategies that guide people’s decisions. We describe these strategies in the form of ﬁnite automata (e.g. Abreu and Rubinstein, 1988; Aumann, 1981; Binmore and Samuelson, 1992; Nelson, 1975; Suppes, 1969), which are models that change their state 
	The results of such evolutionary simulations can be employed to help explain how cooperation can develop and to illustrate strategies that guide people’s decisions. We describe these strategies in the form of ﬁnite automata (e.g. Abreu and Rubinstein, 1988; Aumann, 1981; Binmore and Samuelson, 1992; Nelson, 1975; Suppes, 1969), which are models that change their state 
	-

	and their corresponding output depending on the inputs encountered. We compare the strategies we ﬁnd for the repeated IG with those that have been investigated for the repeated symmetric (PDG—Luce and Raiffa, 1957), usually taken as the standard framework within which to study the emergence and breakdown of cooperation in social interactions. Given that asymmetric situations are common, as we argue, the IG provides an extension of the studies previously carried out on the PDG. 
	-
	Prisoner’s dilemma game 
	-
	-


	This article is organized as follows. We ﬁrst introduce the IG as a simple form of an asymmetric interaction, and then use three game-theoretical concepts to evaluate the performance of a small set of strategies for the IG. Through this evaluation the weaknesses of the game-theoretical concepts and the need for our evolutionary approach, manifested in the three studies that follow, become clear. In the ﬁrst evolutionary study the differences between the IG and the PDG are examined. The second study explores
	-
	-
	-

	2. EVALUATING THE PERFORMANCE OF REPEATED GAME STRATEGIES 
	What are strategies that enable cooperation—trust and rec-iprocity—between unrelated individuals? As a ﬁrst step to understand the mechanisms that enable cooperation, we will evaluate strategies analytically, illustrating their strengths and weaknesses. For this purpose, ﬁrst an asymmetric social interaction is deﬁned. 
	-

	. The investment game representing an asymmetric social interaction 
	2.1

	In asymmetric games, player roles are not interchangeable as they are in symmetric games—that is, the two players face 
	In asymmetric games, player roles are not interchangeable as they are in symmetric games—that is, the two players face 
	different decision options with different resulting payoffs. The IG represents an asymmetric interaction between two individuals. In this two-person sequential bargaining game, both players receive an endowment. First, player A can invest any amount of the endowment, which is then tripled, producing some surplus before it is delivered to player B. Next, player B decides how much of the tripled amount she wishes to return to player A (Figure 1). 
	-


	Assume each player starts with an endowment of 10. Player A could invest 5 of his 10 endowment, which is then multiplied to 15 and sent to player B. Player B could then return 5, so that player A ends up with the ﬁve he kept and the additional ﬁve player B returned, and player B receives the 10 of the trebled investment she kept and her own endowment of 10. If player A makes any investment, this leads to a total payoff for both players greater than the sum of both endowments, producing a If player A invests
	-
	-
	-
	surplus. 
	efﬁ-cient 
	inefﬁcient 
	-
	inefﬁcient outcome 

	However, experimental results deviate from this equilibrium prediction. In a study by Berg et al. (1995), participants in the position of player A sent on average $5.2 of their endowment of $10 to their counterpart, whereas participants in the position of player B returned on average $4.7 of the trebled investment. Only two of the 32 player A participants in the experiment sent nothing to their counterpart. This result is in line with other experimental studies of asymmetric games showing that people often 
	-

	How can this observed cooperation be explained when assuming individuals are primarily self-interested? One common 
	How can this observed cooperation be explained when assuming individuals are primarily self-interested? One common 
	explanation is based on the idea that interactions enable cooperation by creating the opportunity to reciprocate cooperative behavior and punish uncooperative behavior. Trivers (1971) was one of the ﬁrst who emphasized the role of repetition, which has attracted most of the research that tries to explain cooperation between unrelated, self-interested individuals (Axelrod, 1984; Schelling, 1960; Sugden, 1986). Beside repetition other factors that promote cooperation between self-interested individuals have b
	repeated 
	-
	-
	-
	-


	. Repeated games 
	2.2

	Indeed, repetition can support cooperation in the symmetric indeﬁnitely repeated (iterated) Prisoner’s dilemma game (IPD). The two players of the unrepeated, “one-shot” PDG can either cooperate or defect (see Figure 2). For both players, defecting always leads to a greater payoff regardless of whether the opponent defects or cooperates; thus, defecting is a dominant strategy. However, each player receives a greater payoff when both players cooperate than when they both defect, thus the individual payoff-max
	-
	-
	-

	Investment: x% of 10 Increase: 3.10.x Player B Return: y% of 3.10.x Payoff A=10-10.x+y.3.10.x Player A Payoff B=10+3.10.x-y.3.10.x } 
	The investment game. The payoff of player A is deﬁned as his endowment minus his investment plus player B’s return. Player B’s payoff is deﬁned as her endowment plus the trebled investment of player A minus player B’s return. 
	Figure 1. 

	Player A Cooperate Defect 
	Player A Cooperate Defect 
	Player A Cooperate Defect 
	Player A Cooperate Defect 

	Player B 
	Player B 
	Player B 
	Cooperate Defect 



	20, 20 
	20, 20 
	20, 20 

	0, 40* 
	0, 40* 


	40*, 0 
	40*, 0 
	40*, 0 

	10*, 10* 
	10*, 10* 



	The Prisoner’s dilemma game. The ﬁrst value in the cells represents player A’s payoff and the second value player B’s payoff. Because the game is symmetric, the roles of players A and B are interchangeable. The asterisks indicate the best reply strategies for each player. The cell with two asterisks indicates the Nash equilibrium. 
	Figure 2. 

	The PDG differs from the IG in its symmetric payoff structure, simultaneous decisions, and dichotomous decision alternatives (cooperate/defect versus a numerical amount to transfer). However, both games represent a social dilemma, in that the individuals’ rational decisions lead to a socially undesired (and inefﬁcient) outcome—the absence of cooperation. Due to this similarity between the two games, we begin our exploration of cooperating strategies for the repeated IG by considering strategies that have be
	-

	In the IPD the game is repeated for an unknown number of periods, so that cooperating can become payoff-maximizing because the other player may reciprocate cooperation in the hopes of maintaining the beneﬁts of mutual cooperation in future periods. Axelrod (1984) demonstrated that a simple strategy called (TFT) can lead to cooperation in the IPD, as it cooperates as long as the opponent cooperates and defects only if the opponent defected in the previous period. Astonishingly, this simple strategy outperfor
	-
	-
	Tit for Tat 
	-
	-
	-
	Grim

	However, both Grim and TFT are vulnerable to mistakes. For instance, if two players apply TFT and one player defects accidentally, this leads to a long period of alternating defection, 
	However, both Grim and TFT are vulnerable to mistakes. For instance, if two players apply TFT and one player defects accidentally, this leads to a long period of alternating defection, 
	until one player makes a second mistake and mutual cooperation returns (Nowak and Sigmund, 1993). The strategy (or /) out-competes TFT if small mistakes occur. Pavlov cooperates in the ﬁrst period and then cooperates if both players made the same decision in the previous period, otherwise it defects (Kraines and Kraines, 1993, 1995). If one of two players cooperating by applying defects by mistake, both players will defect in the following period, but will proceed to cooperate again in the period after that
	Pavlov 
	win-stay
	lose-shift
	-
	Pavlov 
	Generous TFT 
	Con
	-
	trite TFT 
	always-defect, 
	-
	-


	. Evaluating strategies for the investment game 
	2.3

	In this section, we will deﬁne the (iterated) investment game (IIG) and evaluate strategies for this game. The IIG can be deﬁned as follows: The game consists of two players, A and B. After they play the IG once, constituting one period, a new period follows with a probability of (here, ). Hence, the probability that the game will last for exactly periods is and the expected number of periods for one game is therefore which is a geometrical series that converges to 1/(1-). For the expected number of periods
	indeﬁnitely repeated 
	-
	-
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	Due to the difference in payoff structures (asymmetric versus symmetric) between the IIG and IPD, it can be expected that the evolved strategies will also differ. In particular, the asymmetry of the IIG imposes a unique problem on player A: player A’s investment represents a risky outlay because player B could exploit player A by making no return. Player B cannot make up this exploitation in later periods as she cannot herself initiate cooperation again. Instead it has to be player A who reinitiates coopera
	-
	less 
	-
	all 
	-
	-
	preceding 

	The game-theoretic equilibrium prediction for the IIG can be drawn from the for indeﬁnitely repeated games (Fudenberg and Tirole, 1991). The Folk Theorem requires that an outcome should be “individually rational” for each payoff-maximizing player. Any outcome with an average payoff for player A lower than player A’s endowment is individually not rational for player A. Likewise, any outcome that gives player B an average payoff below player B’s endowment plus the proportion 1-(here 1%) of the trebled investm
	folk theorem 
	-
	δ 
	-
	-
	-

	0 10 20 30 40 0 10 20 30 40 payoff player A payoff player B 
	Payoff region for the indeﬁnitely repeated IG and the prediction of the Folk theorem for indeﬁnitely repeated games. The large triangle indicates all possible payoff combinations for the two players (payoff region). The hatched triangle marks the payoff combinations that are equilibria for the repeated IG with a continuation probability of 0.99, as predicted by the Folk theorem. The diagonal between the two coordinates (30, 10) and (0, 40) represents efﬁcient outcomes that maximize the mutual payoffs. 
	Figure 3. 

	endowment that player B does not accept). Some equilibria consist of efﬁcient outcomes that maximize the sum of both player’s payoffs (i.e. a sum of payoff of 40). For the following, we consider an efﬁcient outcome that leads to a joint payoff of 40 as a “cooperative outcome”, whereas any inefﬁcient outcome is considered an “uncooperative outcome”. Whether or not a cooperative outcome is obtained depends solely on player A’s decision, which has to be an investment of 100%. Unfortunately, as can be seen in F
	endowment that player B does not accept). Some equilibria consist of efﬁcient outcomes that maximize the sum of both player’s payoffs (i.e. a sum of payoff of 40). For the following, we consider an efﬁcient outcome that leads to a joint payoff of 40 as a “cooperative outcome”, whereas any inefﬁcient outcome is considered an “uncooperative outcome”. Whether or not a cooperative outcome is obtained depends solely on player A’s decision, which has to be an investment of 100%. Unfortunately, as can be seen in F
	-
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	capture a wide range of strategies, including all the ones discussed above for the IPD. 
	-


	An automaton can be visualized as a graph of connected states. The automaton starts in the initial state. Given input corresponding to the opponent’s last decision, the automaton can move to a different state. For the purpose of parsimony, we assume that each automaton has an “aspiration level” with which the opponents’ level of investment or return is sorted into two categories (i.e., player A’s move is labeled “Trust” versus “Distrust” for the opponent player B auto-mata, and player B’s move is labeled “R
	-
	-
	-
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	With this notation, strategies for the IIG can easily be represented. However, the possible number of automata is quite large, even if one restricts the automata considered to a maximum of two states. Therefore we focus our analytical exploration (though not our simulations) on a small but diverse set of just six strategies for player A (Figure 4). The strategy never makes an investment, whereas always makes an investment of 100%. and are Grim strategies that invest fully as long as B’s return is above the 
	-
	-
	-
	Never-Invest 
	Always-Invest 
	Min-Grim 
	Fair-Grim 
	-

	Player A Strategies 
	Punish-Once E 100% 0% R Always-Invest 100% 0% Never-Invest Booster E 50% 100% R R E E (Exploiting): B’s Return < 34%; R (Reciprocating): B’s Return  34% E Min-Grim 100% 0% R E Fair-Grim 100% 0% R E (Exploiting): B’s Return < 34%; R (Reciprocating): B’s Return  34% E (Exploiting): B’s Return < 67%; R (Reciprocating): B’s Return  67% E (Exploiting): B’s Return < 67%; R (Reciprocating): B’s Return  67% 
	Selected set of strategies for player A. For each automaton states are represented by circles and the initial state is indicated by the left arrow that is not connected to any other state. Each state determines an output, represented by the number inside each circle. Given an input from the opponent, automata may move to other states, indicated by the arrows that start from a state and point to the same or another state; the inputs that cause these particular moves are indicated by the label on each arrow. 
	Figure 4. 

	67%, which yields an equal “fair” payoff of 20 for both players if A invests fully.) In contrast to the Grim strategies’ immediate and unforgiving uncooperative reaction to exploitation, the strategies and are more forgiving. Punish-Once repeats an investment of 100% until player B makes a return below the aspiration level of 34%. In this case it makes no investment for one period, thereafter returns to an investment of 100%. Booster is an even more tolerant strategy: it starts with an investment of 50%, an
	∼
	-
	Punish-Once 
	Booster 
	-
	-

	We restricted player B to a set of ﬁve strategies (see Figure 5). Three non-reactive one-state automata for player B 
	-

	Player B Strategies 
	0% No-Return 67% Fair-Return T (Trusting): A’s Investment  90%; D (Distrusting): A’s Investment < 90% Min-Return 34% Fair-Reactive 67% D D D T T 0% T Min-Reactive 34% D D D T T 0% T 
	Selected set of strategies for player B. For each automaton states are represented by circles and the initial state is indicated by the left arrow that is not connected to any other state. Each state determines an output, represented by the number inside each circle. Given an input from the opponent, automata may move to other states, indicated by the arrows that start from a state and point to the same or another state; the inputs that cause these particular moves are indicated by the label on each arrow. 
	Figure 5. 

	differ only with respect to their return rates: (0%), (34%), and (67%). The additional two-state automata (returning 34%) and (67%) are responsive to player A’s decision. Both strategies only make their respective returns if player A’s investment is at or above their aspiration level, otherwise they return nothing. Their aspiration level was set at 90%, making substantial investments by player A necessary to induce returns by player B. 
	No-Return 
	Min-Return 
	Fair-Return 
	Min-Reactive 
	Fair-Reactive 
	-

	Although this set of strategies is somewhat arbitrary it includes important characteristics. First, there are basically two crucial investment rates used for the set of strategies: an investment rate of 100% maximizes the possible payoff for player A given player B’s behavior, provided B returns at least 34% of the trebled investment. An investment rate of 0% is appropriate if the interaction would lead to a payoff below player A’s endowment. Second, there are three crucial return rates for player B: either
	Although this set of strategies is somewhat arbitrary it includes important characteristics. First, there are basically two crucial investment rates used for the set of strategies: an investment rate of 100% maximizes the possible payoff for player A given player B’s behavior, provided B returns at least 34% of the trebled investment. An investment rate of 0% is appropriate if the interaction would lead to a payoff below player A’s endowment. Second, there are three crucial return rates for player B: either
	endowment, or player B returns 67%, which leads to equal “putative” fair payoff allocations between both players. To construct the selected set of automata, the crucial investment rates and aspiration levels corresponding to the crucial return rates of player B were selected. In addition, some strategies incorporate a “punishment” mechanism, so that strategies for player A respond to low returns with low investments or, in case of player B, respond to low investments with low returns. In sum, with this smal
	-


	. Nash equilibrium 
	2.3.1

	A strategy combination forms a Nash equilibrium if the two strategies are mutual best replies out of the available strategy set.A best reply strategy maximizes the player’s payoff given the opponent’s strategy. Table I shows the expected average payoffs that the strategies reach against each other and indicates the various Nash equilibria. Even with the small set of strategies deﬁned above, many equilibria exist, which lead to a variety of payoff combinations as predicted by the Folk theorem. Player B strat
	1 
	-
	-
	-
	-

	. Evolutionary stability 
	2.3.2

	The Nash equilibrium concept for evaluating strategies for the IIG has the problem that the number of strategy combinations 
	TABLE I Payoff matrix for the indeﬁnitely repeated IG for the selected set of strategies 
	Table
	TR
	Fair-Reactive
	Fair-Reactive

	10.00, 10.00* 
	10.00, 10.00* 

	20.10*, 19.90* 20.10*, 19.90 20.10*, 19.90 
	20.10*, 19.90* 20.10*, 19.90 20.10*, 19.90 

	5.00, 25.00 20.10*, 19.90 
	5.00, 25.00 20.10*, 19.90 


	Min-Reactive
	Min-Reactive
	Min-Reactive

	10.00, 10.00* 
	10.00, 10.00* 

	10.01, 10.20 10.20*, 29.80* 10.20*, 29.80* 
	10.01, 10.20 10.20*, 29.80* 10.20*, 29.80* 

	5.00, 25.00 10.20*, 29.80 
	5.00, 25.00 10.20*, 29.80 


	Player B strategies 
	Player B strategies 
	Player B strategies 

	Min-Return Fair-Return 
	Min-Return Fair-Return 

	10.00, 10.000* 10.00, 10.00* 
	10.00, 10.000* 10.00, 10.00* 

	10.01, 10.200 20.10*, 19.90* 10.200*,29.80* 20.10*, 19.90 10.200*,29.80* 20.10*, 19.90 
	10.01, 10.200 20.10*, 19.90* 10.200*,29.80* 20.10*, 19.90 10.200*,29.80* 20.10*, 19.90 

	10.199, 29.70* 20.05, 19.85 10.200*, 29.80 20.10*, 19.90 
	10.199, 29.70* 20.05, 19.85 10.200*, 29.80 20.10*, 19.90 


	No-Return
	No-Return
	No-Return

	10.00*, 10.00* 
	10.00*, 10.00* 

	9.90, 10.30 9.90, 10.30 5.00, 25.00 
	9.90, 10.30 9.90, 10.30 5.00, 25.00 

	5.00, 25.00 0.00, 40.00* 
	5.00, 25.00 0.00, 40.00* 


	Player Astrategies
	Player Astrategies
	Player Astrategies

	Never-InvestFair-GrimMin-GrimPunish-Once
	Never-InvestFair-GrimMin-GrimPunish-Once

	BoosterAlways-Invest
	BoosterAlways-Invest



	: The cells of the matrix show the expected average payoffs of the strategies for the indeﬁnitely repeated IG, with a continuation probability of 0.99. The ﬁrst value represents player A’s payoff and the second value player B’s payoff. The asterisks indicate the best reply strategies for each player. Cells with two asterisks indicate Nash equilibria. 
	Note
	-

	representing equilibria is too large to distinguish the most promising strategies—9 out of 11 strategies in our restricted set appear in Nash equilibria. Thus the concept makes no narrow predictions about which outcomes people are likely to reach and which strategies they may employ in the IIG. One way to address this problem is to explore other plausible and more restrictive approaches for evaluating strategies such as the concept of evolutionary stability (see Bendor and Swistak, 1998; Maynard Smith, 1984
	-
	-
	-
	-
	evolutionarily stable strategy 
	ESS
	-
	(σ) 

	payoff(ESS,ESS)= payoff(σ,ESS)→ payoff(ESS,σ) > payoff(σ,σ). 
	In contrast to the Nash equilibrium concept, which is weak for indeﬁnitely repeated games (i.e., too many strategy combinations fulﬁll its requirements), the evolutionary stability concept is strong (i.e., its requirements are difﬁcult to fulﬁll). From our set of six player A and ﬁve player B strategies presented above, 30 combined strategies for the symmetric game can be composed. None of these combined strategies are evolutionarily stable, because none fulﬁll the stability criterion. This result is not su
	In contrast to the Nash equilibrium concept, which is weak for indeﬁnitely repeated games (i.e., too many strategy combinations fulﬁll its requirements), the evolutionary stability concept is strong (i.e., its requirements are difﬁcult to fulﬁll). From our set of six player A and ﬁve player B strategies presented above, 30 combined strategies for the symmetric game can be composed. None of these combined strategies are evolutionarily stable, because none fulﬁll the stability criterion. This result is not su
	-
	-
	-
	-

	(Boyd and Lorberbaum, 1987; Lorberbaum, 1994). Thus the ESS concept does not help us in identifying a smaller set of reasonable strategies for the IIG either. 

	An alternative concept of (Limit ESS) appears to be more appropriate for evaluating repeated game strategies (Leimar, 1997; Samuelson, 1991; Selten, 1983, 1988). For Nash equilibrium strategies, multiple best reply strategies often exist, disqualifying the equilibrium strategy as an ESS. These ties in payoffs can often be broken if players in the game make errors with a small probability, which can be called a “perturbed game” (Selten, 1983). A strategy is called a Limit ESS for a game (in which no errors o
	limit evolutionarily stable strate
	-
	gies 
	-
	-
	-

	When playing an indeﬁnitely repeated game “strategy selection” errors could occur, which implies that sometimes at the beginning of a game (i.e. in the ﬁrst period of the repeated game) a player selects an unintended strategy. For exploring whether the above set of strategies contains Limit ESSs when selection errors occur, we assume that a player will accidentally select an unintended strategy (at random) in 1% of the games. Table II shows the corresponding payoffs for each strategy if both players select 
	-
	-
	-
	-
	0
	.
	1
	/n
	n 
	-
	-

	TABLE II Payoff matrix for the perturbed indeﬁnitely repeated IG with selection errors 
	Table
	TR
	Fair-Reactive
	Fair-Reactive

	10.07, 10.11 19.97, 19.82* 
	10.07, 10.11 19.97, 19.82* 

	19.98*, 19.91 
	19.98*, 19.91 

	19.96, 19.95 
	19.96, 19.95 

	5.18, 24.93 
	5.18, 24.93 

	19.95, 19.99 
	19.95, 19.99 


	Min-Reactive
	Min-Reactive
	Min-Reactive

	9.99, 10.15* 10.05, 10.39 
	9.99, 10.15* 10.05, 10.39 

	10.24*, 29.61 
	10.24*, 29.61 

	10.23, 29.65 
	10.23, 29.65 

	5.10, 24.97 
	5.10, 24.97 

	10.21, 29.69 
	10.21, 29.69 


	Player B strategies 
	Player B strategies 
	Player B strategies 

	Fair-Return
	Fair-Return

	10.10, 10.10 20.00*, 19.81 
	10.10, 10.10 20.00*, 19.81 

	20*, 19.9 
	20*, 19.9 

	19.99, 19.94 
	19.99, 19.94 

	19.89, 19.89 
	19.89, 19.89 

	19.98, 19.98 
	19.98, 19.98 


	Min-Return
	Min-Return
	Min-Return

	10.00, 10.10 10.06, 10.40 
	10.00, 10.10 10.06, 10.40 

	10.25*, 29.62* 
	10.25*, 29.62* 

	10.24, 29.66* 
	10.24, 29.66* 

	10.18, 29.56* 
	10.18, 29.56* 

	10.22, 29.69 
	10.22, 29.69 


	No-Return
	No-Return
	No-Return

	9.96*, 10.12 9.91, 10.46 
	9.96*, 10.12 9.91, 10.46 

	9.91, 10.56 
	9.91, 10.56 

	5.12, 24.94 
	5.12, 24.94 

	5.07, 24.94 
	5.07, 24.94 

	0.23, 39.61* 
	0.23, 39.61* 


	Player Astrategies
	Player Astrategies
	Player Astrategies

	Never-InvestFair-Grim
	Never-InvestFair-Grim

	Min-Grim
	Min-Grim

	Punish-Once
	Punish-Once

	Booster
	Booster

	Always-Invest
	Always-Invest



	: The cells of the matrix show the average payoff the strategies obtained against each other, if players make selections errors with probability 0.01. 
	Note

	Therefore the Limit ESS concept, contrary to the Nash equilibrium and ESS concepts, indicates that one strategy combination from the selected set outperforms the others in terms of their stability under the occurrence of selection errors. These low-probability errors have the effect of breaking ties that were previously present between strategies’ payoffs. As can be seen in Table 1, when no errors occur, the strategies Min-Grim, Punish-Once, and Always-Invest for player A perform equally against four of pla
	-

	The assumption that people both commit errors with low probability and also take into account the possibility that others will commit errors when making strategic decisions is psychologically very reasonable. Therefore it is plausible to use the Limit ESS concept to evaluate strategies: Strategies have to be best replies and have to be stable under the presence of errors such that other strategies cannot replace them. Our theoretical analysis demonstrated that the many strategies picked out by the Nash equi
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	-
	-
	-
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	3. STUDY 1: COOPERATIVE STRATEGIES IN THE IIG 
	To ﬁnd out what kinds of strategies can produce cooperation, that is, trust and reciprocity, in an asymmetric social situation, we simulated in Study 1 an evolutionary process for the IIG. In this simulation, a population of agents, equipped with different strategies, played the IIG against each other. In addition, for comparison, we ran a similar simulation for the IPD (with the payoff matrix deﬁned in Figure 2). These simulations follow 
	To ﬁnd out what kinds of strategies can produce cooperation, that is, trust and reciprocity, in an asymmetric social situation, we simulated in Study 1 an evolutionary process for the IIG. In this simulation, a population of agents, equipped with different strategies, played the IIG against each other. In addition, for comparison, we ran a similar simulation for the IPD (with the payoff matrix deﬁned in Figure 2). These simulations follow 
	the Limit ESS concept as they incorporate the idea of selection errors discussed above: during the evolutionary process, agents occasionally enter the population using new or altered strategies that differ from those already in common use. Due to the difference in payoff structures (asymmetric versus symmetric) between the IIG and IPD, it can be predicted that the strategies that enable cooperation for the asymmetric IIG will be cooperative than those for the symmetric IPD. Speciﬁ-cally, we can ask whether 
	-
	-
	less 
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	. Method 
	3.1

	. Representing strategies 
	3.1.1

	The ﬁnite automata for strategies were represented as vectors. Each automaton’s state requires three elements of the vector, one for the output and two to identify the next states that can be moved to depending on the dichotomous input. For the IIG, the output was restricted to multiples of 10 ranging from 0 to 100 for simpliﬁcation. Automata for the IPD have two possible outputs, “Cooperate” or “Defect”. In addition, automata for the IIG have an aspiration level ranging from 0 to 100 for categorizing the o
	. Simulating an evolutionary process 
	3.1.2

	To simulate the evolutionary process, we used a genetic algorithm (Goldberg, 1989; Michalewicy, 1996; Mitchell, 1996) as is becoming common in evolutionary game theory (e.g. Axelrod, 1987; Hoffmann, 1999, 2001). Agents compete against each other in pairs. In the ﬁrst generation, for each of the 100 agents 
	To simulate the evolutionary process, we used a genetic algorithm (Goldberg, 1989; Michalewicy, 1996; Mitchell, 1996) as is becoming common in evolutionary game theory (e.g. Axelrod, 1987; Hoffmann, 1999, 2001). Agents compete against each other in pairs. In the ﬁrst generation, for each of the 100 agents 
	-

	in the IIG two automata were randomly generated, one for the player A role and one for the player B role, whereas in the IPD only one automaton was needed for each agent. The automata outputs, states, and aspiration levels were drawn with equal probability from the set of possible values. At every generation, each agent in the IIG played 50 games in each role (100 games total), and each agent in the IPD played 50 games, with a continuation probability at each period. For each game, an opponent agent was dra
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	Based on their ﬁtness, agents were selected for the next generation via a tournament selection procedure (see Goldberg and Deb, 1991; Michalewicy, 1996). Each agent took part in six different “tournaments” (pooled comparisons) of six randomly-chosen agents. From each of the 100 tournaments, the agent with the highest ﬁtness (averaged over the two roles in the IIG) was selected for the next generation. If multiple agents tied for the highest ﬁtness, one was randomly selected. To create population variation a
	Based on their ﬁtness, agents were selected for the next generation via a tournament selection procedure (see Goldberg and Deb, 1991; Michalewicy, 1996). Each agent took part in six different “tournaments” (pooled comparisons) of six randomly-chosen agents. From each of the 100 tournaments, the agent with the highest ﬁtness (averaged over the two roles in the IIG) was selected for the next generation. If multiple agents tied for the highest ﬁtness, one was randomly selected. To create population variation a
	-
	p 
	= 
	0
	.
	80 
	-
	-
	-
	p 
	= 
	0
	.
	33 
	p 
	= 
	0
	.
	049
	)

	a mutation occurred, a new output value or state was drawn with equal probability from the set of possible outputs and states. For the aspiration level of the automata for the IIG, new values were drawn from a normal distribution with the mean equal to the old aspiration leveland a standard deviation of 5% points. 
	2 
	-


	This genetic algorithm was run 100 times, each for 1000 generations. Since automata with different numbers of states can still be equivalent in terms of their behavioral output, after every 10 generations all evolved automata (each having a maximum of two states) were transformed to their corresponding minimal automaton, that is, the automaton out of the set of equivalent automata with the minimum number of states (Hopcroft and Ullman, 1979). The last (1000th) generation was analyzed as a snapshot of where 
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	. Results 
	3.2

	. Characteristics of the evolutionary process 
	3.2.1

	The evolutionary dynamics varied substantially across the different runs for the IIG, but some general patterns can be identiﬁed. In the beginning of the evolutionary process, the populations quickly evolved to one-state automata for the IIG: Never-Invest for player A and No-Return for player B, which together lead to a payoff of around 10 for each player. This conﬁguration is often kept for long periods (hundreds of generations) until the population suddenly changes, frequently switching to a Min-Grim and 
	The evolutionary dynamics varied substantially across the different runs for the IIG, but some general patterns can be identiﬁed. In the beginning of the evolutionary process, the populations quickly evolved to one-state automata for the IIG: Never-Invest for player A and No-Return for player B, which together lead to a payoff of around 10 for each player. This conﬁguration is often kept for long periods (hundreds of generations) until the population suddenly changes, frequently switching to a Min-Grim and 
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	long period. Following this, another population transition may lead back to the Never-Invest and No-Return strategy combination, and so on. Figure 6 shows the average payoffs obtained in one such run of the evolutionary process. During the ﬁrst 450 generations, the payoff for each player is around 10, after which payoffs increase to 12 and 28 when the population evolves to the Min-Grim and Min-Return strategies. 
	-


	For the IPD, the picture is different. At the beginning of the evolutionary process Always-Defect takes over the whole population, leading to payoffs of 10. In all runs this conﬁgu-ration does not change substantially; in other words, in none of the runs did the evolutionary process lead to the development of cooperative strategies producing efﬁcient outcomes.
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	. Strategies evolved over the course of evolution 
	3.2.2

	Because of the variation across runs for both the IPD and IIG, we now turn to an analysis of the evolved automata of the last (1000th) generation. Since the strategy population in the 1000th generation is the result of an evolutionary process of one single run, each population is independent of all other populations, which is beneﬁcial for statistical comparison. In 81 out of the 100 runs for the IIG, the deﬁned as those strategies that were applied by more than 50% of the agents in a population, in the las
	predominant strat
	-
	egies, 

	There was clear convergence on the strategies used in the efﬁcient and inefﬁcient IIG outcome cases, respectively. In all 81 runs with inefﬁcient outcomes, the agents always used Never-Invest and No-Return. For each of the 19 runs with efﬁcient outcomes, the predominant strategy for player A was Min-Grim with an average aspiration level of 33% (SD = 4.4%). In 14 out of the 19 runs, the Min-Grim strategies were 
	Figure
	An example run of the simulated evolutionary process for the repeated IG in study 1. Figure 6A shows the strategies’ average payoffs for player A and player B. Figure 6B shows the proportion of the Never-Invest and Min-Grim strategies for player A and the No-Return and Min-Return strategies for player B in the population. 
	Figure 6. 

	paired with the Min-Return strategy for player B, while the other ﬁve runs had different two-state automata for player B. The behavior of these alternative strategies is quite similar to Min-Return as they always return 40% of the trebled 
	paired with the Min-Return strategy for player B, while the other ﬁve runs had different two-state automata for player B. The behavior of these alternative strategies is quite similar to Min-Return as they always return 40% of the trebled 
	-

	investment when a substantial investment is made by player A, and only in the case of very low investments do these strategies move to a second state with lower returns. These results mostly match the strategies found with the Limit ESS concept earlier. 
	-


	For the IPD, the evolutionary process converged strongly. In all 100 out of the 100 runs, the population of agents applied the Always-Defect strategy, leading to an inefﬁcient outcome with payoffs of 10. Thus, the proportion of efﬁcient outcomes of 19% for the IIG is signiﬁcantly larger than the proportion of 0% efﬁcient outcomes in the IPD [corresponding to a large effect size of according to Cohen, 1988]. 
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	. Summary of Study 1 
	3.3

	Study 1 demonstrates that the strategies that most frequently evolve for the IIG and the IPD lead to inefﬁcient outcomes. The strategies that produced the inefﬁcient outcomes for both games were very similar as they consist of only one “uncooperative” state: the Never-Invest and No-Return strategies for the IIG, and the Always-Defect strategy for the IPD. 
	-

	The important difference between the games is that for the IIG a substantial proportion of runs were observed where the evolutionary process led to a population of cooperative strategies in the last generation, whereas for the IPD the evolutionary process never led to cooperative strategies. This is surprising as one would expect cooperative strategies like TFT to evolve, considering the results of previous studies (e.g. Axelrod, 1984). 
	Although for the IIG the proportion of the evolutionary processes that led to efﬁcient outcomes was much larger than for the IPD, the strategies that enabled the efﬁcient outcomes for the IIG were not very cooperative: the Min-Grim strategy for player A starts with a cooperative decision, but the strategy responds to a single low return from player B by switching to no investment for all following periods, eliminating the possibility for any further cooperation. Thus Min-Grim 
	Although for the IIG the proportion of the evolutionary processes that led to efﬁcient outcomes was much larger than for the IPD, the strategies that enabled the efﬁcient outcomes for the IIG were not very cooperative: the Min-Grim strategy for player A starts with a cooperative decision, but the strategy responds to a single low return from player B by switching to no investment for all following periods, eliminating the possibility for any further cooperation. Thus Min-Grim 
	-
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	is an unforgiving strategy and therefore it is less cooperative than strategies such as TFT, which always allows a return to a cooperative state at the opponent’s initiative. Furthermore, even when the evolutionary process led to an efﬁcient outcome in the IIG, the payoff allocation between players A and B was extremely skewed in B’s favor. Equal “putative” fair payoff allocations were not observed. 
	-


	4. STUDY 2: INCREASING STRATEGY COMPLEXITY 
	In Study 2 we explored the impact of allowing greater potential strategy complexity in the two games. In Study 1, the auto-mata representing the strategies were restricted to a maximum number of two states, yielding strategies that are rather simple.For the IPD it has been shown that increased potential complexity of strategies could alter what evolves, such as strategies that take mistakes of the opponent into account (Lindgren, 1991) or are otherwise able to exploit opponent strategies (Axelrod, 1987). Th
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	. Method 
	4.1

	We made two changes to the simulations used in Study 1. First, the maximum possible number of states for a strategy was doubled from two to four. Second, to have the same 
	We made two changes to the simulations used in Study 1. First, the maximum possible number of states for a strategy was doubled from two to four. Second, to have the same 
	-

	overall probability of a mutation occurring in an automaton, the per-element mutation rate had to be reduced (i.e. for a four-state automaton the mutation probability had to be for each parameter in the strategy). 
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	. Results 
	4.2

	As in Study 1, the evolutionary dynamics differed substantially across runs. Here we will report only the predominant strategies in the last generation of the evolutionary process with 1000 generations. 
	-

	. Strategies evolved for the IIG 
	4.2.1

	For the IIG, the increase in the number of allowed states did not change the outcome of the evolutionary process substantially. In 71 out of 100 runs (compared to 81 in Study 1), the evolutionary process led to an inefﬁcient result with a payoff of around 10 for both players in the last generation. For all of these inefﬁcient outcomes, player A used Never-Invest. For player B, the strategy No-Return was found in 55 of these 71 runs, with variants of No-Return in the remaining 16. These variants, despite con
	-

	Efﬁcient outcomes (with payoffs 12 and 28 for A and B) arose in 23 out of the 100 runs. Min-Grim was used by player A in all these 23 runs, with a mean aspiration level of 34% (SD 4%). For player B, Min-Return was used in 11 out of 23 runs; in the other 12 runs, strategies with a higher number of states were applied. However, similar to Min-Return, these strategies always make the “minimal” return of 40% when player A makes a substantial investment (giving player A the minimum payoff above his endowment, i.
	Efﬁcient outcomes (with payoffs 12 and 28 for A and B) arose in 23 out of the 100 runs. Min-Grim was used by player A in all these 23 runs, with a mean aspiration level of 34% (SD 4%). For player B, Min-Return was used in 11 out of 23 runs; in the other 12 runs, strategies with a higher number of states were applied. However, similar to Min-Return, these strategies always make the “minimal” return of 40% when player A makes a substantial investment (giving player A the minimum payoff above his endowment, i.
	= 
	-

	Min-Grim and Min-Return strategy combination found in Study 1. In the remaining six of the 100 runs almost efﬁ-cient outcomes were produced with an average payoff of 33 for both players (12 for player A and 21 for player B). However, the populations consisted of rather mixed strategies. 
	-


	In contrast to the IIG, the increase of potential strategy complexity had a strong impact on the evolutionary outcomes for the IPD. The number of inefﬁcient outcomes in the last generation arising from predominant use of Always-Defect decreased to 74 out of 100 runs (compared to 100 inefﬁ-cient runs in Study 1). In the remaining 26 runs, the strategies almost produced efﬁcient outcomes with mean payoffs of around 19 (SD 1.6). The strategy TFT was not observed in any of these near-efﬁcient runs. Instead in 2
	-
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	Cautious TFT. 
	-

	D DD D C C D,C D D Cautious TFT C C 
	A strategy, named cautious TFT, which was predominant in the efﬁ-cient runs for the indeﬁnitely repeated PDG in Study 2. 
	Figure 7. 

	Overall, the 29% proportion of runs with efﬁcient outcomes for the IIG did not differ signiﬁcantly from the 26% proportion of efﬁcient outcomes for the IPG [, which is smaller than what is commonly considered as a small effect size according to Cohen, 1988]. 
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	. Summary of Study 2 
	4.3

	We found that increasing the potential complexity of strategies increased the frequency of efﬁcient outcomes for the IPD, but had little effect for the asymmetric IIG. On the one hand the proportion of IIG runs where the strategies in the 1000th generation produced efﬁcient outcomes did not differ from the proportion observed in Study 1. On the other hand the IIG strategies that evolved did not differ substantially from the strategies observed in Study 1: basically the same strategies produced the efﬁcient 
	-

	The larger potential complexity of the strategies had a strong effect on the evolutionary process for the IPD, as a substantial proportion of efﬁcient outcomes were observed in the last generation. The strategies that produced the cooperative outcomes differ from TFT, consistent with previous results (Axelrod, 1987; Lindgren, 1991), mostly by starting with an uncooperative decision in the ﬁrst period. Some of them can thereby exploit unconditionally cooperative strategies that cooperate regardless of whethe
	The larger potential complexity of the strategies had a strong effect on the evolutionary process for the IPD, as a substantial proportion of efﬁcient outcomes were observed in the last generation. The strategies that produced the cooperative outcomes differ from TFT, consistent with previous results (Axelrod, 1987; Lindgren, 1991), mostly by starting with an uncooperative decision in the ﬁrst period. Some of them can thereby exploit unconditionally cooperative strategies that cooperate regardless of whethe
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	to exploit others and to establish mutual cooperation. These results suggest that in a symmetric bargaining situation where exploitation is possible, increased strategy complexity may to be an advantage because it enables more devious exploits. On the other hand, in an asymmetric bargaining situation like the IIG, where player A has no possibility to exploit the opponent, greater strategy complexity may be of no use. 
	-


	5. STUDY 3: DIFFERENCES BETWEEN THE IIG AND THE IPD 
	Studies 1 and 2 show that there are substantial differences between the kinds of evolved strategies that produce efﬁcient outcomes for the IIG and the IPD. What causes these differences? One distinction between the two games is that the two players make decisions sequentially in the IIG, whereas they make decisions simultaneously in the IPD. A second distinction is that the players in the IIG have a continuum of possible decisions, whereas they make dichotomous decisions in the IPD. A third distinction betw
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	. Method 
	5.1

	In Study 3 we conducted simulations in two distinct conditions. In the ﬁrst condition, we ran an evolutionary process for the IIG as done in Study 1, but with two important changes: both players had to make 
	In Study 3 we conducted simulations in two distinct conditions. In the ﬁrst condition, we ran an evolutionary process for the IIG as done in Study 1, but with two important changes: both players had to make 
	-
	simultaneous and dichotomous IIG 

	their decisions simultaneously. This has a major impact on player B’s decision process. Whereas in the sequential game, player B could take player A’s decision (investment) in the present period into account when making a return decision, in the simultaneous game player B (like player A) can only consider decisions of previous periods. Therefore, in these simulations the automata for player B could only change their states (if at all) in response to player A’s investments in the previous period, without kno
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	-
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	In the second condition we ran an evolutionary process for the IIG as in the simultaneous and dichotomous condition, but with one additional change to the modiﬁed IIG: if player A decides to make no investment and player B decides to make a return, then A receives a payoff of 40 and B receives 0. This makes the game almost identical to the IPD represented in Figure 2, with the remaining difference that if both players “cooperate”, that is when player A invests and player B makes a return, player A receives 
	symmetric IIG 
	-
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	. Results 
	5.2

	In the simultaneous and dichotomous IIG condition the strategies of the population in the last generation produced efﬁ-cient outcomes in 14 of 100 runs. This proportion does not differ signiﬁcantly from the 19% proportion of efﬁcient 
	In the simultaneous and dichotomous IIG condition the strategies of the population in the last generation produced efﬁ-cient outcomes in 14 of 100 runs. This proportion does not differ signiﬁcantly from the 19% proportion of efﬁcient 
	-

	outcomes observed for the IIG in study 1 [which is lower than a small effect size according to Cohen, 1988]. Strategies similar to those in Study 1 were observed: of the 86 inefﬁcient runs, for player A the Never-Invest strategy was observed in 85 runs and for player B the No-Return strategy was observed in 68 runs. Likewise for the 14 efﬁcient runs, in 13 runs the Min-Grim strategy was observed for player A and in six runs the Min-Return strategy was observed for player B. In the remaining runs variants of
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	When we also made the IIG symmetric, along with dichotomous and simultaneous decisions, the proportion of efﬁcient outcomes in the last generation of the evolutionary process decreased substantially, so that in none of the populations in the last generation were efﬁcient outcomes observed. This proportion differs substantially from the proportion of 19% efﬁ-cient outcomes observed for the IIG in Study 1 [, corresponding to a large effect size according to Cohen, 1988]. In all 100 runs the strategies Never-I
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	. Summary of Study 3 
	5.3

	In the simultaneous and dichotomous condition of Study 3 the proportion of efﬁcient outcomes was similar to the proportion of efﬁcient outcomes in Study 1. Moreover the strategies that evolved for the dichotomous and simultaneous IIG do not differ from the observed strategies in the sequential game with continuous decision alternatives. In contrast, when the asymmetry is also removed from the game by making the ranks of the player’s payoffs for the IIG identical with the ranks of players’ payoffs in the IPD
	In the simultaneous and dichotomous condition of Study 3 the proportion of efﬁcient outcomes was similar to the proportion of efﬁcient outcomes in Study 1. Moreover the strategies that evolved for the dichotomous and simultaneous IIG do not differ from the observed strategies in the sequential game with continuous decision alternatives. In contrast, when the asymmetry is also removed from the game by making the ranks of the player’s payoffs for the IIG identical with the ranks of players’ payoffs in the IPD
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	in the payoff structure of the two games rather than to the sequential decision process or the continuous decision alternatives of the IIG. 
	-


	In the ﬁrst condition with the modiﬁed simultaneous and dichotomous form of the IIG, the risk for player A of trusting player B is similar to the risk of cooperating in the IPD, namely, exploitation by the other player. However, the opportunities for overcoming this risk differ in the two games because of the difference in symmetric versus asymmetric payoffs. Whereas either player who exploits the other in the IPD can compensate the exploitation through later cooperation, this compensation is not possible i
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	6. DISCUSSION 
	In this paper, we have asked whether individuals’ cooperative decision strategies in an asymmetric social relationships represented by the IIG differ from those used in symmetric relationships represented by the IPD. This question is particularly important because of the prevalence of asymmetric social relationships: individuals’ positions in relationships are often hierarchical and not interchangeable (remember the employer and employee in the introduction). If asymmetry has an impact on decision strategie
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	. Game-theoretic concepts 
	6.1

	We have illustrated how three different game-theoretic concepts can be used to evaluate repeated game strategies. Even with a small selected set of strategies we could show that the Nash equilibrium concept is too weak because too many strategies represent equilibria. One way to tackle the resulting equilibrium selection problem is to require additional abilities of the strategies. An important advantage for any strategy is persistence in the long run, evolutionarily speaking. This idea, captured in the ESS
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	. Evolutionary simulations 
	6.2

	Only a limited number of strategies can readily be assessed in terms of game-theoretic equilibrium concepts. With evolutionary simulations, however, a large set of strategies can be evaluated. In Study 1, where automata were restricted to a maximum of two states, the evolutionary process typically led to two outcomes for the IIG. First and most frequently, inefﬁcient outcomes were obtained by the strategies Never-Invest and No-Return. Second, the less common efﬁ-cient outcomes were usually associated with M
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	What is the reason for the frequent emergence of the Min-Grim strategy in the IIG? One strength of Min-Grim is that it can only be exploited once, after which it puts itself in 
	What is the reason for the frequent emergence of the Min-Grim strategy in the IIG? One strength of Min-Grim is that it can only be exploited once, after which it puts itself in 
	an unexploitable position by no longer investing. However, this advantage is also a disadvantage, because it disables Min-Grim from ever obtaining efﬁcient outcomes again once it has moved to its inefﬁcient non-investing decision (i.e. its second state). Therefore, the Min-Grim strategy, while being as simple as TFT, is less cooperative. The crucial aspect of the IIG seems to be that when player B defects and exploits A, it is only possible to reestablish cooperative outcomes again if player A—the exploited
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	Player A in the IIG thus faces a dilemma: He has to avoid being exploited, yet he can only increase his payoff through substantial investment, which would again make him vulnerable to exploitation. In contrast, the strategic situation for player B appears to be quite simple: She merely has to make a decision about the rate of returns. Promoting high investment does not seem to be particularly important, which explains the low variance of the strategies obtained for player B across all studies. 
	-

	Study 2 showed that allowing greater strategy complexity had no substantial effect on the strategies that evolved for the IIG, though it did enable the evolution of more complex strategies for the IPD, which led to efﬁcient outcomes. When the complexity of the strategies was increased, the proportion of evolutionary processes that led to efﬁcient outcomes was the same for the IIG and the IPD. However, the TFT strategy was not observed in any evolutionary process of the IPD. This might be because the simple 
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	Study 3 demonstrated that the sequential decisions and the continuous decision alternatives of the IIG do not affect the kind of strategies that evolve for the game. This could be explained by the fact that the order in which the decisions are made should only be relevant for player B (because B may or may not take A’s decision into account). But because the strategies that typically evolve for player B are very simple (No-Return or Min-Return, with only one state) and do not take into account move on A’s p
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	. Fair allocations 
	6.3

	In almost all simulations for the IIG in which an efﬁcient outcome evolved, the players obtained unequal payoffs. Player A only obtained a little more (12) than his endowment whereas player B got almost all (28) of the produced surplus. This result was expected from our theoretical analysis because the Fair-Grim and Fair-Return strategy combination (with equal payoffs) is weakly dominated by the Min-Grim and Min-Return strategy combination (with unequal payoffs), receiving a lower or equal total payoff. The
	-

	This process resembles a common good problem (see Led-yard, 1995) in which the common good is represented by high returns of player B. If players A restrict themselves to taking only high returns (like Fair-Grim does), the common good of high returns for player A will be maintained in the long run; therefore, this self-restriction is socially preferable. However, for each player A, it is individually rational also to accept low returns in every period, rather than ending the interaction with the current B p
	. Experimental evidence 
	6.4

	How do the results of our evolutionary simulations relate to experimental evidence? There is a growing body of experimental ﬁndings on behavior in asymmetric games like the 
	How do the results of our evolutionary simulations relate to experimental evidence? There is a growing body of experimental ﬁndings on behavior in asymmetric games like the 
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	(Guth,¨ et al., 1982; Ochs and Roth, 1989), or the (Guth¨ et al., 1997). In the sequential “one-shot” trust game each player has two choice alternatives. The ﬁrst player can distrust the second player, which leads to a medium payoff for both players. Or the ﬁrst player can trust the second, which produces a larger payoff for both players if the second player reciprocates the trusting decision. However, if the second player exploits the ﬁrst’s trust, the ﬁrst player earns nothing and the second player receiv
	ultimatum game 
	trust game 
	-


	Rieskamp and Gigerenzer (2005) studied the IIG experimentally and observed a large magnitude of cooperation: the average mutual payoff received was 34 compared to the possible maximum of 40. However, this cooperation did not lead to equal payoffs for both players. Consistent with our evolutionary simulations, participants in the role of player B reached a higher average payoff compared to player A participants (19 versus 15). Thus some of the participants realized the power of the player B role and used it 
	Rieskamp and Gigerenzer (2005) studied the IIG experimentally and observed a large magnitude of cooperation: the average mutual payoff received was 34 compared to the possible maximum of 40. However, this cooperation did not lead to equal payoffs for both players. Consistent with our evolutionary simulations, participants in the role of player B reached a higher average payoff compared to player A participants (19 versus 15). Thus some of the participants realized the power of the player B role and used it 
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	to a state with no investment and stays in this state for the remainder of the game. The strategies that best modeled participants’ decisions in the role of player B simply made a constant return of either 50 or 67%. Thus overall these experimental results partly matched our simulation results, supporting Min-Grim and (nearly) Min-Return as strategies that can be— and often are—used to achieve stable cooperation in the IIG. 
	-
	-
	-


	. Conclusions 
	6.5

	Recently several authors have argued that the decision strategies people use depend on the social domains they encounter (Bugental, 2000; Fiske, 1992; Hirschfeld and Gelman, 1994). Bugental (2000), for instance, proposes a distinction between ﬁve domains including hierarchical and reciprocity-based relationship. One important dimension separating domains is the structures of decision consequences or payoffs. A reciprocity-based domain might be characterized by a symmetric payoff structure, whereas a hierarc
	Recently several authors have argued that the decision strategies people use depend on the social domains they encounter (Bugental, 2000; Fiske, 1992; Hirschfeld and Gelman, 1994). Bugental (2000), for instance, proposes a distinction between ﬁve domains including hierarchical and reciprocity-based relationship. One important dimension separating domains is the structures of decision consequences or payoffs. A reciprocity-based domain might be characterized by a symmetric payoff structure, whereas a hierarc
	-
	-
	-
	-
	-
	-

	might often be not as “nice” as those that have been studied for symmetric interactions: even when efﬁcient high-payoff outcomes are produced, the division of resources is unfairly skewed in one agent’s favor, reﬂecting the original asymmetry that the two parties brought to the interaction. 
	-


	Furthermore, the efﬁcient (if unequal) cooperative outcomes in an asymmetric situation such as the IIG are fragile. Once cooperation breaks down through an instance of exploitation, there is no good way for it to return. Player B cannot be contrite, because there is no way to signal to player A the intention to return to cooperative play if A does not ﬁrst trustingly invest. Yet why should A do so and risk being exploited further if there is no evidence of contrition ﬁrst forthcoming from B? Imagine the emp
	-
	-
	-
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	NOTES 
	. 
	. 
	. 
	1

	Here we restrict our discussion to pure strategies—meaning that players use one strategy exclusively. However, the deﬁnition also holds for mixed strategies. A mixed strategy is a probability distribution over the set of pure strategies, which deﬁnes the probability with which each of the pure strategies is selected by the player. 
	-


	. 
	. 
	2

	A modiﬁcation of the aspiration level has a large impact on the automaton’s behavior, as it determines, for all states, to which state the automaton moves next depending on the opponent’s decision. Because of this strong effect, the mutation function used a normal distribution with the old aspiration as the mean, thereby only changing the aspiration levels moderately. 
	-


	. 
	. 
	3

	In addition, we ran simulations for longer periods, but this did not lead to substantially different results. For instance, we ran one single evolutionary process for the IIG for 100,000 generations and determined for each 100th generation whether the strategies of the population produced an efﬁcient outcome, that is a mutual payoff of at least 38. In 28.7% of these 1000 sampled generations the outcome was efﬁ-cient, which is similar to the proportion of efﬁcient outcomes when comparing the 100 independent 
	-
	-


	. 
	. 
	4

	Here we assume that the number of states of the minimized automaton can be used as an indicator of an automaton’s complexity: the higher the number of states, the more information an automaton can store, thus providing a larger memory with which to instantiate more complex strategies (see also Abreu and Rubinstein, 1988). 
	-
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