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Computational Evolutionary 
Musicology 

EDUARDO R. MIRANDA AND PETER M. TODD 

10.1. Introduction 

The beginning of Chapter 2 offered a sensible definition of music as temporally 
organized sound. In the broader sense of this definition, one could arguably state 
that music is not uniquely human. A number of other animals also seem to have 
music of some sort. Complex vocalizations can be found in many birds (Marler 
and Slabbekoorn 2004), as well as in mammals such as whales (Payne and McVay 
1971) and bats (Behr and von Helversen 2004). In a chapter suggestively entitled 
‘Zoomusicologie’ in the book Musique, Mythe, Nature ou Les Dauphins d’Arion, 
Mâche (1991) presents an interesting discussion on the formal sophistication of 
various birdcalls. Recently Holy and Guo (2005) demonstrated that the ultrasonic 
vocalizations that male mice produce when they encounter female mice or their 
pheromones have the characteristics of song. What is intriguing is that primates 
who are close related to humans are not as ‘musical’ as those mammals that are 
far more distantly related to us. This intriguing fact suggests that music might 
have evolved independently among various types of animals, at various degrees of 
sophistication. In this context, it would be perfectly plausible to suggest the notion 
that robots might also be able to evolve music. 

In order to build systems for the emergence of music one needs to establish the 
factors that may shape the course of musical evolution, such as physiological and 
cognitive factors, including models of interaction. 

The physiological factors comprise the sensors and actuators of interacting 
individuals. These involve models of the hearing system, body, limbs and so on. 
It may also involve models of the sensory-motor cortex and associated neural 
mechanisms involved in sensory-motor tasks. A discussion on the expertise for 
building these models is beyond the scope of this chapter; it includes fields such 
as Biomechanics (Zinkovsky, Sholuha and Ivanov 1996) and Biophysics (Glaser 
2001). Readers are invited to consult the literature in these fields. 

As for the cognitive factors, the brain certainly uses different mental modules 
to process music and these modules have varying degrees of independence from 
each other. Parsons (2003) has conducted a number of brain-imaging experiments, 
which indicate that the neural system for processing music is widely distributed 
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throughout our brain. This finding is confirmed by studies of patients with brain 
lesions (Peretz et al. 1994). Peretz and Coltheart (2003) proposed a functional 
architecture of the brain for music processing that captures the typical proper-
ties of such distributed modular organization. Basically, they have identified two 
main processing modules: One concerned with processing pitch and the other with 
rhythm. Both modules process incoming musical signals backed by a musical lex-
icon; a kind of memory bank of musical segments. Surely, this basic architecture 
can be refined into smaller and perhaps more specialized components, depend-
ing on the level of detail at which one wishes to study its functionality. This is 
likely to become increasingly complex as research in the emerging field of Cog-
nitive Neuroscience of Music progresses. What is important, however, is that this 
modularity of the brain for music processing suggests a plausible methodology 
for building computational models of music processing. By focusing on relatively 
simpler cognitive tasks, one can adopt a bottom up approach to tackle the problem 
of modelling cognitive factors. In most cases it may be more effective to address 
the individual pieces of the jigsaw first, rather than the whole picture at once. 

Following the development of fields such as Artificial Life (Levy 1993) and 
Memetics (Brodie 1996), we propose a computational modelling approach to 
Evolutionary Musicology: Computational Evolutionary Musicology. Evolution-
ary Musicology is the branch of Biomusicology (Wallin 1991) that studies the 
origins and evolution of music (Wallin, Merker and Brown 2000). For example, it 
studies the question of animal song and selection pressures underlying the evolu-
tion of music in humans and possibly in other species. 

In gross terms, whereas Artificial Life attempts to understand evolutionary pro-
cesses via the computer simulation of life forms Memetics studies the replication, 
spread and evolution of information patterns called memes. A fundamental no-
tion of Memetics is that cultural evolution can be modelled through the same basic 
principles of variation and selection that underly biological evolution. This implies 
a shift from genes as units of biological information to a new type of units of cul-
tural information, which are the memes. Computational Evolutionary Musicology 
therefore involves the use of computer modelling and simulations to study the cir-
cumstances and mechanisms whereby music systems might originate and evolve 
in artificially created worlds inhabited by communities of interacting autonomous 
agents (e.g. software agents or robots). 

Scholars throughout the ages have attempted to trace the origins of music. The 
book Music and the Origins of Language, by Thomas (1995) presents a review of 
the theories purported by philosophers of the French Enlightenment. For example, 
in his Essai sur l’origine des langues (Essay on the origins of language) the 
philosopher Rousseau (1990) described the earliest spoken languages as being 
composed of vocal inflexions such as warnings, cries for help and hunting-related 
shouts. In the beginning, he proposed, gestures were preferred to communicate 
rational ideas, whereas vocal utterances were primarily used to express feelings 
and passions. As human society grew in complexity, these vocal utterances needed 
to become more precise and less passionate. And as language followed the path of 
logical argumentation, the intonation of these primordial utterances evolved into 
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music. Music, according to Rousseau, thus evolved from the sounds of passionate 
speech. 

More recently, The Singing Neanderthals: The Origins of Music, Language, 
Mind and Body, by Mithen (2005), discusses this subject from an evolutionary 
perspective supported by archaeological evidence. Also, The Origins of Music, 
edited by Wallin and colleagues (Wallin, Merker and Brown 2000), collates a 
series of chapters expressing a diversity of theories and viewpoints. 

Computational Evolutionary Musicology is in many ways akin to the compu-
tational modelling approach of Evolutionary Linguistics to study of the origins 
and evolution of language (Cangelosi and Parisi 2001; Christiansen and Kirby 
2003), but its goals are more pragmatic, in the sense that they can readily inform 
the development of new technologies for music making. For instance, a better 
understanding of basic mechanisms of musical origins and evolution is of great 
importance for musicians looking for hitherto unexplored ways to create new mu-
sic works with computers. Broadly speaking, current techniques for implement-
ing generative music systems can be classified as abstract algorithmic or music 
knowledge-based. Abstract algorithmic techniques are suitable for generating mu-
sic from the behaviour of algorithms that were not necessarily designed for music 
in the first instance, but embody pattern generation features that are suitable for 
producing musical materials. Such algorithms include fractals (Milicevic 1996) 
and chaotic systems (Bidlack 1992) to cite but two examples. Music knowledge-
based techniques generate music using algorithms derived from or inspired by 
well-established music theory. Most of these systems can learn compositional 
procedures from given examples, adopting either a symbolic approach (Steedman 
1984; Cope 1996; Papadopoulos and Wiggins 1998) or a connectionist (neural net-
works) approach (Todd and Loy 1991; Mozer 1994), depending on the way they 
store information about music. Hybrid systems also exist (Burton and Vladimirova 
1997). 

Both classes of techniques have their merits and pitfalls. Abstract algorith-
mic techniques tend to produce rather complex music, most of which may sound 
too remote from what the majority of people, including expert listeners, would 
consider musical. This is possibly so because abstract algorithmic music tends 
to lack the cultural references that people normally rely upon when listening to 
music. Conversely, knowledge-based techniques tend to produce pastiches of ex-
isting musical pieces, which often are of little interest for composers aiming to 
create new music; that is, music that is not based on mimicking existing pieces 
or well-known musical styles. Computational Evolutionary Musicology brings 
the merits of both approaches closer to each other by offering the possibility of 
evolving new musical systems informed by the same principles that might have 
helped to shape existing musical styles. Inspired by Casti’s (1997) use of the term 
‘would-be worlds’, Artificial Life’s goal of looking at ‘life as it could be,’ we 
refer to these emerging new musical systems as ‘would-be music’ or ‘music as it 
could be’. 

In this chapter, we explore some examples of Computational Evolution-
ary Musicology that employ a range of Artificial Life-inspired computational 
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approaches. We begin by describing a model for studying the role of mating-
selective pressure in the evolution of musical taste. Next, we introduce a mimetic 
model for studying the evolution of musical lexicons in a community of au-
tonomous robots furnished with a vocal synthesizer, a hearing apparatus and a 
memory device. Finally, we present the application of neural networks to evolv-
ing simple generative sequencing rules in a community of rhythm players and 
imitators. 

10.2. Mating Selective Pressure and Surprise 

Todd and Werner (1999) proposed a model for studying the role of sexual selection, 
specifically the selective pressure that comes from the processes of choosing mates, 
in the evolution of music. The model employs mating selective pressure to foster 
the evolution of fit composers of courting tunes. The model co-evolves ‘male’ 
composers who play simple musical tunes along with ‘female’ critics who judge 
these tunes and decide with whom to mate in order to produce the next generation 
of composers and critics. 

Todd and Werner’s model is largely inspired by Charles Darwin’s theory of 
sexual selection as outlined in the book The Descent of Man and Selection in 
Relation to Sex, where he argued that male birdsong had evolved via a mechanism 
of female choice (Darwin 1992). Miller (2000) attempted to take this notion even 
further by arguing that the evolution of human music was shaped by sexual selection 
to function as a courtship display. 

Each male composer holds a tune of 32 musical pitches from a set of 24 different 
pitches spanning two octaves. The female critics encode a transition-table that rates 
the transitions from one note to another in a heard tune. The table is a 24-by-24 
matrix, where each entry represents the female’s expectation of the probability 
of one pitch following another in a song. Given these expectations, a critic can 
decide how well she likes a particular tune. When she listens to a composer, she 
considers the transition from the previous pitch to the current pitch for each note 
of the tune, gives each transition a score based on her transition table and adds 
those scores to come up with her final evaluation of the tune. Each critic listens 
to the tunes of a certain number of composers who are randomly selected; all 
critics hear the same number of composers. After listening to all the composers 
in her courting-choir, the critic selects as her mate the composer who produces 
the tune to which she gives the highest score. In this selective process, all critics 
will have exactly one mate, but a composer may have a range of mates from 
none to many, depending on whether his tune is unpopular with everyone or if 
he has a song that is universally liked by the critics. Each critic has one child per 
generation created via crossover and mutation with her chosen mate. This child 
will have a mix of the musical traits and preferences encoded in its mother and 
father. The sex of the child is randomly determined and a third of the population 
is removed at random after a mating session in order not to reach a population 
overflow. 
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From the many different scoring methods proposed to judge the tunes, the 
one that seems to produce the most interesting results is the method whereby 
critics enjoy being surprised. Here the critic listens to each transition in the tune 
individually, computes how much she expected the transition and subtracts this 
value from the probability that she attached to the transition she most expected to 
hear. For example, if a critic has a value 0.8 stored in her transition table for the 
A–E transition, whenever she hears a note A in a tune, she would expect a note E 
to follow it 80% of the time. If she hears an A–C transition, then this transition will 
be taken as a surprise because it violates the A–E expectation. A score is calculated 
for all the transitions in the tune (e.g. the expected probability of the heard A–C 
transition, which might be 0.1, is subtracted from the expected A–E transition 
probability of 0.8 to yield a surprise rating of 0.7) and the final sum registers how 
much surprise the critic experienced; that is, how much she likes the tune. What 
is interesting here is that this does not result in the composers generating random 
tunes all over the place. It turns out that in order to get a high surprise score, a tune 
must first build up expectations, by making transitions to notes that have highly 
anticipated notes following them and then violate these expectations, by not using 
the highly anticipated note. Thus there is constant tension between doing what is 
expected and what is unexpected in each tune, but only highly surprising tunes are 
rewarded. 

Overall, this model has shown that the selection of co-evolving male composers 
who generate surprising tunes and female critics who assess these tunes accord-
ing to their preferences, can lead to the evolution of structured melodies and the 
maintenance and continual turnover of tune diversity over time. 

In addition to mating selective pressure, this model embodies an important 
cognitive trait for survival: The ability to identify an unexpected element in a se-
quence of sound events. The preference for surprising tunes reflects this ability, 
which is very sophisticated in humans, even to the extent that our brain does not 
require our attention to perform this task. Neuroscientists have reported a com-
ponent of the auditory event-relation potential (ERP), called mismatch negativity 
(MMN), which is elicited by a deviant stimulus in a repetitive auditory event, even 
in the absence of attention. ERP is a stereotyped electrophysiological response 
to a stimulus detected with the electroencephalogram (EEG). MMN is normally 
detected between 100 and 200 ms after the odd stimulus is heard. Näätänen and 
colleagues (2001) suggested that different sounds develop their representation in 
the neurophysiological substrate of the auditory memory and the MMN indicates 
an attention-independent change detection mechanism. 

In Todd and Werner’s model, the composers are initiated with random tunes and 
the critics with transition tables set with probabilities calculated from given folk-
tune melodies. There is, however, a puzzling fundamental question that has not 
been addressed in this model: Where could the expectations of the female critics 
come from if they are not to be built in by hand? Would it be possible to evolve 
such expectations from scratch? A model that may provide support for addressing 
this question is introduced next. 
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10.3. Social Bonding and Imitation: Evolution of Intonation 

Miranda (2002b) proposed a mimetic model where a small community of interac-
tive robots programmed with appropriate motor, auditory and cognitive skills can 
evolve a shared lexicon of sonic intonation patterns from scratch, after a period of 
spontaneous creation, adjustment and memory reinforcement. In this case, expec-
tation is defined as a sensory-motor mechanism whereby the robots evolve vectors 
of motor control parameters to produce imitations of heard intonation patterns. 
The robots thus expect to hear pitch sequences that correspond to their evolved 
motor vectors. 

Intonation is generally defined as the melody of speech; it is characterized by the 
variations in the pitch of a speaker’s voice. The rationale for attempting to model the 
evolution of intonation patterns comes from the fact that intonation is fundamental 
for the development of vocal communication. There have been a number of research 
reports giving evidence that babies are born with an acute sensitivity to intonation 
(Locke 1993; Nazzi et al. 1998). This ability probably evolved due to the need for 
enhanced mother-infant interactions. Baby talk or infant-directed-speech, sounds 
like music due its exaggerated intonation, which helps babies and very young 
children to develop their linguistic ability. Mothers use baby talk to influence the 
behaviour and elicit emotions in pre-linguistic infants. Ultimately, those mothers 
whose intonation abilities made them more able to provide infant care and those 
infants who were receptive to such care, have gained a reproductive advantage. 

Following this idea, Miranda’s robots are programmed with two fundamental 
instincts: 

a) To imitate what they hear 
b) To foster social bonding 

Imitation is defined here as the task of hearing an intonation pattern and ac-
tivating the motor system to reproduce it. Sociability is assessed in terms of the 
similarity of the robots’ repertoires. In other words, in order to be sociable a robot 
must form a repertoire that is similar to the repertoire of its peers. The intonations 
thus create a social identity for the robots. 

The importance of imitation for evolution has gained much attention after the 
discovery of mirror neurons in the frontal lobes of macaque monkeys. Mirror 
neurons are neurons which fire both when an animal performs an action and when 
the animal observes the same action performed by another animal, especially of 
the same species. Thus, the neurons mirror the behaviour of another animal, as 
though the observers were themselves performing the action. These neurons have 
subsequently been observed in some birds and in other primates including humans 
(Rizzolatti and Craighero 2004). The mirror system is sometimes considered to 
represent a primitive version of a simulation heuristic that might underlie a theory 
of mind (Gallese and Goldman 1998); the notion of theory of mind will re-appear 
in our discussion later. Interestingly, while mirror neurons are present in macaque 
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monkeys, these monkeys have not been observed to imitate each other’s behaviour. 
It is questionable whether mirror neurons evolved for learning by imitation. Instead, 
their function might rather be to allow an individual to understand what another 
individual is doing or to recognize the other individual’s action. 

The rationale for programming the robots with a drive for social bonding is 
supported by research by neurobiologists such as Freeman (1995), who brings his 
knowledge of brain chemistry to support the notion that music plays an important 
role in social bonding. According to Freeman, the brain releases oxytocin in the 
basal forebrain during group music making and dancing. The theory goes that by 
loosening synaptic links associated with prior knowledge, this hormone clears the 
path for the acquisition of new knowledge by sharing and imitating behaviour in 
a group. 

Mithen (2005) also supports the notion that joint music making forges a group 
identity with high emotional content. ‘Hominids would have frequently and metic-
ulously examined the likely intentions, beliefs, desires and feelings of other mem-
bers of a group before deciding whether to cooperate with them. But on other 
occasions simply trusting them would have been more effective, especially if 
quick decisions were necessary.’ Those individuals who suppressed their own 
self-identity and instead forged a group identity by joint music making had better 
chances to thrive than those individuals who tended to act selfishly. 

10.3.1. The Robots 

The robots are equipped with a voice synthesizer, a hearing apparatus and a memory 
device. The model was initially implemented with software agents and the original 
interaction algorithms were largely inspired by the work of Luc Steels (1997) 
on evolutionary language games. Drouet subsequently helped to implement the 
robotic version described below, with refinements to the interaction algorithms 
(Fig. 10.1) (Miranda and Drouet 2006). 

The voice synthesizer is essentially implemented as a physical model of the 
human vocal mechanism (Boersma 1993; Miranda 2002a). The robots need to 
compute three vectors of parameters in order to produce intonations: Lung pressure, 
the width of the glottis and the length and tension of the vocal chords, represented 
here as lung pressure(n), interarytenoid(n) and cricothyroid(n), respectively. As 
for the hearing apparatus, it employs short-term autocorrelation-based analysis to 
extract the pitch contour of a vocal sound (Miranda 2001). The algorithm features 
a parameter that defines the sensitivity of the auditory perception of the robots. 
In essence, this parameter regulates the resolution of the hearing apparatus by 
controlling the precision of the short-term autocorrelation analysis. 

Essentially, a robot’s memory stores its repertoire of intonations, but it also stores 
other information such as probabilities, thresholds and reinforcement parameters. 
They have two distinct modules to store intonations in their memories: A motor 
map and a perceptual map. The motor map stores information in terms of three 
vectors of motor (vocal) parameters and the perceptual map stores information in 
terms of pitch contour. 
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FIGURE 10.1. The robotic implementation uses DRK8000 robots, manufactured by 

Dr. Robot R . 

An intonation is represented as a graph whose vertices stand for initial (or 
relative) pitch points and pitch movements and the edges represent a directional 
path. Whilst the first vertex must have one outbound edge, the last one must have 
only one incoming edge. All vertices in between must have one incoming and one 
outbound edge each. Vertices can be of two types, initial pitch points (referred to 
as p-ini) and pitch movements (referred to as p-mov) as follows (Fig. 10.2): 

p-ini = {SM, SL, SH}
p-mov = {VLSU, LSU, MSU, SSU, RSB, SSD, MSD, LSD, VLSD} 

where: 

SM = start the intonation in the middle register 
SL = start the intonation in the lower register 
SH = start the intonation in the higher register 

FIGURE 10.2. The representation of an intonation, where t(n) indicates an ordered sequence 

of n pitches. 
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and 

VLSU = very large step up 
LSU = large step up 
MSU = medium step up 
SSU = small step up 
RSB = remain at the same band 
SSD = small step down 
MSD = medium step down 
LSD = large step down 
VLSD = very large step down 

An intonation will invariably start with a p-ini, followed by one or more p-movs. 
It is assumed that an intonation can start at three different voice registers: Low 
(SL), middle (SM) and high (SH). Then, from this initial point {t(n), n = 0} the 
next pitch at t(n + 1) might jump or step up or down and so forth. 

It is important to note that labels or absolute pitch values are not relevant here 
because this scheme is intended to represent abstract melodic contours rather than a 
sequence of musical notes drawn from a specific tuning system. The tuning should 
emerge during the interactions. 

10.3.2. The Algorithms 

The main algorithms for the robotic interactions are given as follows: 

Algorithm 1: Robot-player produces an intonation 
1. Motor control[α] ⇐ pick-any-motor-control in Motor-Repertoire(robot-player) 

2. synthesize-sound(motor control[α]) 

Algorithm 2: Robot-imitator produces an imitation 
3. Pitch vector[β] ⇐ perceive-intonation 
4. Intonation[β] ⇐ perceptual-representation(pitch vector[β]) 

5. Intonation[] ⇐ search-similar(intonation[β]) in Perceptual-Repertoire 
(robot-imitator) 

6. Motor control[] ⇐ retrieve motor control(motor-control[intonation[]) 

7. synthesize-sound(motor control[]) 

Algorithm 3: Robot-player hears the imitation and gives a feedback 
8. Pitch vector[ψ] ⇐ perceive-imitation 
9. Imitation[ψ] ⇐ perceptual-representation(picth vector[ψ]) 

10. Intonation[φ] ⇐ search-similar(imitation[ψ]) in Perceptual-Repertoire 
(robot-imitator) 

11. Intonation[α] = perceptual-representation(motor control[α]) 

12. IF intonation[α] = intonation[φ] 

13. THEN { feeback ⇐ positive 
14. reinforce(motor control[α]) in Motor-Repertoire(robot-player) 

15. reinforce(intonation[α]) inPerceptual-Repertoire(robot-player)}
16. ELSE { feeback ⇐ negative }
17. output-signal(feedback) 



P1: GFZ

SVNY327-Miranda February 1, 2007 15:27

10. Computational Evolutionary Musicology 227 

Algorithm 4: Robot-imitator reacts to robot-player’s feedback 
18. IF feedback = positive 
19. THEN { approximate(intonation[] → intonation[β]) 

in Perceptual-Repertoire(robot-imitator) 

20. reconfigure motor control(intonation[]) 

in Motor-Repertoire(robot-imitator) 

21. reinforce intonation[] in  Perceptual-Repertoire(robot-imitator) 

22. reinforcemotor control() inMotor-Repertoire(robot-imitator)}
23. ELSE IF feedback = negative 
24. THEN IF success-history(intonation[]) > success-threshold 

25. THEN{ motor control[λ]⇐produce-new-motor-control 
26. Intonation[λ]⇐ perceptual-representation 

(motor control[λ]) 

27. save-new(intonation[λ]) 

to Motor-Repertoire(robot-imitator) 

28. save-new(motor control[λ]) 

to Perceptual-Repertoire(robot-imitator) }
29. ELSE { distantiate(intonation[] ↔ intonation[β]) 

in Perceptual-Repertoire(robot-imitator) 

30. reconfigure motor control(intonation[]) 

in Motor-Repertoire(robot-imitator) } 

Algorithm 5: End of interaction updates 
31. interaction-updates(robot-player) 

32. interaction-updates(robot-imitator) 

Figs. 10.3, 10.4 and 10.5 give a glimpse at the functioning of these algorithms. 
For didactic purposes, these are reduced two-dimensional representations of the 
motor and perceptual repertoires; the co-ordinates do not fully correspond to the 
actual motor and perceptual representations. The numbers in the figures indicate 
actions corresponding to the line numbers of the algorithms. 

All robots have identical synthesis and listening apparatuses. At each round, 
each of the robots in a pair plays one of two different roles: The robot-player and 
the robot-imitator. The robot-player starts the interaction by producing an into-
nation α, randomly chosen from its repertoire. The robot-imitator then analyses 
the intonation α, searches for a similar intonation  in its repertoire and produces 
it. The robot-player in turn hears and analyses the intonation  and checks if its 
perceptual repertoire holds no other intonation φ that is more perceptibly close to 
 than α is. If it finds another intonation φ that is closer to  than α is, then the 
imitation is unsatisfactory, otherwise it is satisfactory. Fig. 10.3 shows an example 
where the robot-player and the robot-imitator hold in their memories two intona-
tions each. The robot-player picks the intonation α from its motor-repertoire and 
produces it (1). The robot-imitator hears the intonation α and builds a perceptual 
representation β of it (4). Then it picks from its own perceptual repertoire the 
intonation  that is most perceptually similar to the heard intonation β (5) and 
produces it as an imitation (6). Next, the robot-player hears the imitation  and 
builds a perceptual representation ψ of it (9). Then it picks from its own perceptual 
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FIGURE 10.3. Example of an unsuccessful imitation. 

repertoire the intonation φ that is most perceptually similar to the imitation ψ (10). 
The robot-player babbles the original intonation α to itself (11) and it concludes 
that α and φ are different (12). In this case the robot-player sends a negative 
feedback to the robot-imitator (17), indicating that the imitation is unsatisfactory. 

When an imitation is unsatisfactory the robot-imitator has to choose between two 
potential courses of action. If it finds out that  is a weak intonation in its memory 
(because it has not received enough reinforcement in the past) then it will move it 
away from α slightly, as a measure to avoid repeating this mistake again. But if  
is a strong intonation (due to a good past success rate), then the robot will leave 
 untouched (because it has been successfully used in previous imitations and a 
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FIGURE 10.4. An example where the unsuccessful imitation involved an intonation that has 

a poor past success rate. 

few other robots in the community also probably consider this intonation as being 
strong) and will create a new intonation λ similar to  to include it in its repertoire; 
that is, the robot produces a number of random imitations and then it picks the 
one that is perceptually most similar to . Let us assume that the intonation  
in Fig. 10.3 has a good past success rate. In this case, the robot-imitator leaves it 
untouched and creates a new intonation λ to include in its repertoire (25, 26). 

Fig. 10.4 shows what would have happened if the intonation  did not have a 
good past success rate: In this case the robot-imitator would have moved  away 
from β slightly (29 and 30). Finally, Fig. 10.5 shows what would have happened 

FIGURE 10.5. An example of a successful imitation. 
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if the robot-player had concluded that α and φ were the same, meaning that the 
imitation was successful. In this case, the robot-imitator would have reinforced 
the existence of the intonation  in its memory and would have moved it slightly 
towards the representation of the heard intonation β. 

Before terminating the round, both robots perform final updates. Firstly they 
scan their repertoire and merge those intonations that are considered to be percep-
tibly close to each other; the merge function removes two intonations and creates 
a new one by averaging their values. Also, at the end of each round, both robots 
have a certain probability Pb of undertaking a spring-cleaning to get rid of weak 
intonations; those intonations that have not been sufficiently reinforced are forgot-
ten. Finally, at the end of each round, the robot-imitator has a certain probability 
Pa of adding a new randomly created intonation to its repertoire; we refer to this 
coefficient as the ‘creativity coefficient’. 

10.3.3. A Typical Simulation Example 

The graph in Fig. 10.6 shows a typical example of the evolution of the average 
repertoire of a group of five interacting robots, with snapshots taken after every 
100 interactions over a total of 5000 interactions. The robots evolved repertoires 
averaging 12 intonations each. (Note that some may have developed more or 
less than 12 intonations.) After a drastic increase of the repertoire at about 800 
interactions, the robots settled to an average of seven intonations each until about 
2200 interactions, when another slight increase took place. Then they settled to an 

FIGURE 10.6. The evolution of the average size of the repertoire of intonations of the whole 

group of robots. In this case the group developed an average repertoire of 12 intonations. 
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FIGURE 10.7. The imitation success rate over time. 

average of nine intonations until about 3800 interactions. From 3800 interactions 
onwards the robots steadily increased their repertoires. The pressure to increase the 
repertoire is mostly due to the probability Pa of creating a new random intonation, 
combined with the rate of new inclusions due to unsatisfactory imitations. The 
size of the repertoire tends to stabilize with time because the more the robots 
use strongly settled intonations, the more these intonations are reinforced in their 
repertoires and therefore the more difficult for new intonations to settle in. 

The graph in Fig. 10.7 plots the imitation success rate of the community, mea-
sured at every 100 interactions. Note the decrease of imitation success rate during 
those phases when the robots were increasing the size of their repertoires. Al-
though the repertoire size tends to increase with time, the success rate tends to stay 
consistently high. However, this is highly dependent upon the number of robots in 
the group. The higher the number of robots, the deeper the fall of the success rate 
and the longer it takes to re-gain the 100% success rate stability. 

Fig. 10.8(a) portrays the perceptual memory of a robot randomly selected from 
the group after 5000 interactions. In this case the length of the intonations varied 
from three to six pitches. (The minimum and maximum length of the intonation to 
be evolved is fixed beforehand.) This particular robot evolved 11 intonations; one 
below the average. Fig. 10.8(b) shows only those intonations that are three pitches 
long. 

An interesting feature of this model is that the lexicon of intonations emerged 
from the interactions of the robots. The actions of each robot are based solely upon 
their own evolving expectations. Also, the robots do not necessarily have to evolve 
the same motor representations for what is considered to be perceptibly identical. 
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FIGURE 10.8. (a) The perceptual memory of one robot. (b) Only those intonations that are 

three pitches long. For the sake of clarity, the background metrics and labels of the graphs 

are not shown. 
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FIGURE 10.9. (a) One of the perceptual patterns from Fig. 10.8(b) and its corresponding 

motor control vectors developed by three different robots, (b) the lung pressure vector, (c) 

the cricothyroid vector and (d) the interarytenoid vector. 
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FIGURE 10.9. (Continued) 

Fig. 10.9 shows the motor functions evolved by three different robots to represent 
what is essentially the same intonation. 

The imitation of an intonation pattern requires the activation of the right mo-
tor parameters in order to reproduce it. The robot-imitators assume that they 
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always can recognize everything they hear because in order to produce an im-
itation a robot will use the motor vectors that best match its perception of the 
sound in question. It is the robot-player who will assess the imitation based on 
its own expectations. Expectation here is a social convention but it is grounded 
on the nature of their sensory-motor apparatus. This mechanism provides a robot 
with the rudiments of the ability to appreciate the knowledge of another robot 
from its own perspective. Intuitively, this ability might relate to what is re-
ferred to as theory of mind. The notion of theory of mind is central to social 
life: The ability to understand that others have beliefs, desires and intentions 
that are different from one’s own. The theory of mind probably emerged from 
the challenge of surviving in a complex social environment, in which decisions 
about cooperation were of vital importance. It is possible that possessing a the-
ory of mind gave early hominids an evolutionary advantage over its ancestors, 
which was the ability to predict the behaviour of others and hence attain greater 
cooperation. 

Both models discussed in this chapter so far deal with short intonations. But 
how about dealing with longer pitch sequences or proper musical compositions? 
Although the symbolic sensory-motor-like memory mechanism proposed for stor-
ing intonations served well the objectives of the model presented above, we must 
admit that it is not efficient for storing longer pitch sequences, let alone fully 
fledged pieces of music. In order to increase the complexity of the model, it is 
necessary to improve the memory mechanism, which would probably be more 
efficient by storing information about generating the sequences rather than the 
sequences themselves. Martins and Miranda (2006) are currently developing a 
connectionist approach to address this problem. Connectionism is an approach to 
modelling systems resembling biological neural networks whereby neurons are 
represented by nodes and connections between neurons are represented by links. 
The definition of the nature of the nodes and links determines the ability of the 
neural network to execute certain operations in a way that reproduces observed 
behaviours of the simulated biological system (Salu 2001). 

10.4. Toward a Connectionist Memory for Evolving 
Sequencing Rules 

João Martins developed a tentative connectionist memory for the aforementioned 
interacting robots consisting of two neural-network modules: A perceptual module 
and a categorization module. The former implements a Sardnet (for self-organizing 
activation, retention and decay network) neural network and the latter uses a feed-
forward neural network. 

The input for the perceptual module is a sequence of sounds, which produces 
a pattern of activations on the Sardnet, representing the types of sounds and 
their position in the sequence. The pattern of activations then becomes the in-
put for the categorization module, which, as its name suggests, categorizes this 
information. 
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Each sound in the sequence presented to the Sardnet is represented as a vector 
of three variables. The first variable indicates its timbre, the second its loudness 
and the third the inter-onset interval (IOI) in milliseconds; pitch is not taken into 
account here. An inter-onset interval is the time between the beginnings or attack-
points of successive sounds, not including their durations. For example, two 16th 

notes separated by a dotted eighth rest would have the same inter-onset interval as 
between a quarter note and a 16th note. As we are not so concerned with a detailed 
representation of timbre at this stage of the research, the value of the first variable 
is merely a label identifying the percussion instrument that played the sound; e.g. 
1 = snare drum, 2 = bass drum, 3 = tom-tom, etc. 

10.4.1. The Perceptual Module 

The Sardnet is a self-organizing neural network for the classification of sequences 
(James and Miikkulainen 1995). The Sardnet is an extension of the self-organizing 
map (Som), which is a neural network used for unsupervised learning developed 
by Kohonen (1997). Fig. 10.10 shows a Som with 16 output nodes and one input 
vector Vt , where t is the index of the sound event in the sequence. The dimension 
of Vt determines the dimension of the weights vector W jk  for each node. The 
Euclidean distance measure d2 determines the distance from the input vector Vt 

to the weight vector W jk  : 

d2(Vt , W jk  ) = 

 
n  

i=1 

 vt,i − w jk,i 

  2 

where Vt is the input vector, with index t in the sequence, W jk  is the weight vector 
of the corresponding node jk and n is the dimension of both Vt and W jk  . 

The Som (Fig. 10.10) is also referred to as a competitive network or ‘winner-
takes-all net’, because only the node whose weight vector is the closest to the input 
vector wins the activation. The weight vector of the winning node is subsequently 
updated in order to render its values even closer to the values of the input vector. 
The neighbouring nodes of the winning node are also similarly updated to a lesser 
degree according to a neighbourhood function that organizes representations of 
similar stimuli on the network topographically. 

The Sardnet carries forward most of the essential features of the Som, but adds 
two important features, which enables it to deal with sequences of events: 

a) The neuron that wins the competition for being closest to the input at one point 
in time is removed from subsequent competitions 

b) All previous neuron activations decay at each time step 

The dynamics of the Sardnet is illustrated in Fig. 10.11. Here a stream of events 
t at the input activated three nodes sequentially: W4,2, W2,3 and W1,2, respectively. 
The training algorithm for the Sardnet is as follows: 
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FIGURE 10.10. Kohonen’s self-organizing map (Som). Vt is the input vector and the W j,k 

are the weight vectors, which define the distance d2 between the input vector and the various 

nodes of the network. In this example, the winner is node W4,2 with d2 = 0.5. 

INITIALIZATION: 
Reset the network 

MAIN LOOP: 
While not end of sequence do: 

1. Find inactive neuron that best matches the input 
2. Assign activation = 1.0 to the found unit 
3. Adjust weight vectors of the neurons in the neighbourhood 
4. Exclude the winning neuron from subsequent competitions 
5. Decrement the activation values for all other active neurons 

RESULT: 
Activated nodes ordered by activation values. 

As with the Som network, the Sardnet uses the same distance d2(Vt ,W jk) to  
estimate which node’s weight vector best matches the input vector. In step 3 of 
the main loop of the training algorithm shown above, the weights of the winning 
neuron and of the neighbourhood neurons are changed according to the following 
adaptation rule: 

w jk  = α(w jk,i − vi ) 

where jand k are the spatial coordinates of the network, i is the index of the 
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FIGURE 10.11. The Sardnet, with variable activation of three nodes sequentially, indicated 

by different colours: from black (node W1,2, the last in the sequence) to light grey (node 

W4,2, the first in the sequence). 

individual components of the vectors and α denotes the learning rate of the 
Sardnet. 

All active neurons are decayed proportionally to the decay parameter d as follows 
(step 5 of the main loop): 

η jk  (t + 1) = dη jk  (t ), 0 < d < 1 

where η is the value for the activation of the network in the element ( j, k). 

10.4.2. Categorization Module 

The categorization module is a feedforward neural network (also called Multi-layer 
Perceptron) for learning patterns of activity with layers of nodes interconnected in a 
feed-forward way. Each input node is fully connected to the middle layer (referred 
to as the hidden layer) of nodes and each node of the hidden layer is subsequently 
connected to every output node (Fig. 10.12). The outputs of the network are explicit 
functions of activations in the hidden layer, which are themselves functions of the 
input nodes. 
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FIGURE 10.12. A generic feedforward neural network. In are the input nodes, Vn are the 

hidden nodes and On the output nodes. W jk corresponds to the strengths (or weights) of the 

connections between the nodes j and k. 

The network uses the backpropagation algorithm to adjust its weights in order 
to best match the values of the input nodes to a desired set of values at the output 
nodes. 

The number of inputs to the categorization network must be the same as the num-
ber of units in the Sardnet, because each Sardnet unit becomes an input to the feed-
forward network. The number of output neurons is arbitrarily set to three because 
it facilitates the visualization of the resulting categorization in a tri-dimensional 
plotting. 

10.4.3. Assessing the Behaviour of the Networks 

As an example, let us consider an agent with a Sardnet of 50 nodes (10 × 5) with 
a learning rate ∝ = 0.1. The network is initialized with random values for weight 
vectors in the range of −1 to 1. Assume that five rhythmic sequences played on 
one or two percussion instruments each (Fig. 10.13) are fed into the network a 
number of times. 

After a few iterations, an organization pattern begins to emerge. The graphs in 
Fig. 10.14 show the evolution of the input weights corresponding to the inter-onset 
intervals (IOI) (the third component of the input vectors). Fig. 10.14(a) shows the 
initial value of the weights, as explained above and Fig. 10.14(b) shows the pattern 
of IOI weight values that emerged after 20 iterations. Then graph 14(c) shows 
the values of IOI weights that emerged after 80 iterations and 14(d) shows the 
difference between the sums of the weights on consecutive iterations. 

Now, let us consider that the agent has a categorization network with 50 input 
units, whose values are given by the activations patterns of the Sardnet. These 
input nodes are fully connected to three nodes forming the hidden layer, which 
in turn are fully connected to three output nodes. This allows for straightforward 
visualization of the categorization of the rhythms in a tri-dimensional space. The 
first three activation layers of 50 Sardnet nodes corresponding to three rhythms 
were used to train the feedforward network to match them with three different 
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FIGURE 10.13. The five training rhythmic sequences. 

FIGURE 10.14. The evolution of the weights corresponding to IOI without change of neigh-

bourhood: (a) Random initialization of weight values; (b) After 20 iterations; (c) After 80 

iterations; (d) Difference between the sum of the weights for consecutive iterations. 
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FIGURE 10.14. (Continued) 

output targets: [0, 0, 1], [1, 0, 0] and [0, 1, 0]. The three learned rhythms are 
marked with an ‘o’ in the categorization space (Fig. 10.15). Next, the Sarnet 
nodes corresponding to the remaining two rhythms were fed into the feedforward 
network. These are marked with an ‘x’ in the categorization space. Clearly, the 
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FIGURE 10.14. (Continued) 

FIGURE 10.15. The tri-dimensional categorization space. 
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agent is able to distinguish the latter two rhythms from the previous three. This 
example shows the meaning of the categorization space: For this case the extreme 
points are the ones acknowledged by the agent as being part of its own repertoire. 

As an initial step to test if this architecture would be suitable to be used as a 
memory mechanism to evolve and store information about sound sequences, two 
robots were programmed with a Sardnet with 400 (20 × 20) nodes coupled with 
a feedforward network with 400 input nodes, three nodes in the hidden layer and 
three output nodes. The choice for number of input nodes is a trade-off between 
scale and computational weight. The size of the network determines the number 
of different events that can be encoded, but the larger the network, the slower the 
computation. The Sardnet was programmed with an initial value for the learning 
rate α = 0.08 and σ = 10; the latter denotes the scope of the neighbourhood, 
which is a Gaussian function centered on the winning neuron that multiplies all 
the elements in the network. 

The Sardnet of one of the robots (the robot-player) was trained with eight 
rhythms (the five ones shown in Fig. 10.13 plus additional three) for 100 iterations. 
Then its feedforward network was trained with the backpropagation algorithm to 
respond to these rhythms in the extreme positions of the categorization space. Fig. 
10.16(a) depicts the robot-player’s pattern of IOI weights, which emerged after 
the 100 iterations. Fig. 10.17(a) shows the categorization of the rhythms in the 
tridimensional categorization space. 

The other robot (the robot-imitator) was not trained. Its task was to evolve its own 
rhythmic categorization by imitating the rhythms produced by the robot-player. 
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FIGURE 10.16. (a) Robot-player’s map of the IOIs; (b) Robot-imitator’s map of the IOIs. 
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FIGURE 10.16. (Continued) 

The interaction is as follows: The robot-player plays rhythms randomly picked 
from its memory and the robot-imitator tries to imitate them. The robot-imitator’s 
learning takes place during this process of imitation. The robot-imitator’s neural 
networks are programmed with the same parameters as the robot-player. Each 
time the robot-imitator hears a rhythm, it calculates its respective position in its 
categorization space. Then it ‘babbles’ a few rhythms (i.e. it generates random 
rhythms and categorises them) until it finds one that is close enough to the one 
it that it is trying to imitate. This rhythm is then played as an imitation to the 
robot-player, who evaluates the imitation in its categorization space. Depending 
on the distance between the imitation and the original rhythm, the robot-player 
sends a feedback to the robot-imitator, which indicates two possible outcomes: 

a) Satisfactory: The imitation is closer to the original rhythm than to any other 
rhythm in its categorization space. 

b) Unsatisfactory: The imitation is closer to a rhythm other than the original rhythm 
in its categorization space. 

If the imitation is satisfactory, then the feedforward network of the robot-imitator 
is trained with one iteration of the backpropagation algorithm to respond to the 
desired category. Conversely, if the imitation is unsatisfactory, then the robot-
imitator will benefit only from the adaptation of the Sardnet weights according to 
its self-organizing behaviour. 
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FIGURE 10.17. (a) The robot-player’s trained categories; (b) The categorization map of the 

robot-imitator at very early stages of the learning process; (c) The categorization map of 

the robot-imitator at a very late stage of the learning process. 
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FIGURE 10.17. (Continued) 

Fig. 10.16(b) portrays the Sardnet of the robot-imitator after 80 interactions, 
which is slightly different from the Sardnet of the robot-player, although they 
seem to be representing the same rhythms. 

Fig. 10.17 shows the categorization maps for both robots. Notice that initial 
categories of the robot-imitator in Fig. 10.17(b) do not match the categories of the 
robot-player in Fig. 10.17(a), but as the learning process progressed, the categories 
converged to the extreme points of the tri-dimensional space in Fig. 10.17(c). 

A preliminary test of the connectionist memory demonstrated that it is possible 
to combine the learning capabilities of neural networks with the dynamics of the 
mimetic model introduced in Section 3. At the time of writing, the connectionist 
memory is being further improved (e.g. to include information about pitch and 
timbre) and embedded in the mimetic robotic model. 

10.5. Concluding Remarks 

This chapter provided a glimpse of the exciting new field of Computational Evo-
lutionary Musicology by demonstrating how music can be studied as an adaptive 
complex dynamic system. In this context, the origins and evolution of music can 
be studied using computer models and robotic simulations. 

One interesting hypothesis that is emerging from the research of a number 
of scholars is that there might have been a single precursor for both music and 
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language: A communication system that had the characteristics that are now shared 
by music and language, but split into two systems at some date in our evolution-
ary history. For instance, Steven Brown (2000) refers to this single precursor as 
musilanguage, whereas Alison Wray (1998) proposed the notion holistic proto-
language, which essentially is the same thing. 

In the introduction we suggested that it would be perfectly plausible to suggest 
that robots might be able to evolve music. Then we demonstrated how this can 
be done. However, we acknowledge that the examples introduced here cannot 
evolve proper music yet, but rather the rudiments of what one might refer to as 
proto-music. 

Much work is still needed in order to embed the robots with the minimum 
necessary physiological and cognitive abilities to evolve music. Nevertheless, the 
models discussed in this chapter are encouraging in the sense that they provide 
strong indications that music might indeed emerge in a society of interacting 
autonomous robots. 
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	10.1. Introduction 
	The beginning of Chapter 2 offered a sensible definition of music as . In the broader sense of this definition, one could arguably state that music is not uniquely human. A number of other animals also seem to have music of some sort. Complex vocalizations can be found in many birds (Marler and Slabbekoorn 2004), as well as in mammals such as whales (Payne and McVay 1971) and bats (Behr and von Helversen 2004). In a chapter suggestively entitled ‘Zoomusicologie’ in the book , Mˆache (1991) presents an inter
	temporally organized sound
	Musique, Mythe, Nature ou Les Dauphins d’Arion

	In order to build systems for the emergence of music one needs to establish the factors that may shape the course of musical evolution, such as physiological and cognitive factors, including models of interaction. 
	The physiological factors comprise the sensors and actuators of interacting individuals. These involve models of the hearing system, body, limbs and so on. It may also involve models of the sensory-motor cortex and associated neural mechanisms involved in sensory-motor tasks. A discussion on the expertise for building these models is beyond the scope of this chapter; it includes fields such as Biomechanics (Zinkovsky, Sholuha and Ivanov 1996) and Biophysics (Glaser 2001). Readers are invited to consult the 
	As for the cognitive factors, the brain certainly uses different mental modules to process music and these modules have varying degrees of independence from each other. Parsons (2003) has conducted a number of brain-imaging experiments, which indicate that the neural system for processing music is widely distributed 
	As for the cognitive factors, the brain certainly uses different mental modules to process music and these modules have varying degrees of independence from each other. Parsons (2003) has conducted a number of brain-imaging experiments, which indicate that the neural system for processing music is widely distributed 
	throughout our brain. This finding is confirmed by studies of patients with brain lesions (Peretz et al. 1994). Peretz and Coltheart (2003) proposed a functional architecture of the brain for music processing that captures the typical properties of such distributed modular organization. Basically, they have identified two main processing modules: One concerned with processing pitch and the other with rhythm. Both modules process incoming musical signals backed by a musical lexicon; a kind of memory bank of 
	-
	-
	-
	-


	Following the development of fields such as Artificial Life (Levy 1993) and Memetics (Brodie 1996), we propose a computational modelling approach to Evolutionary Musicology: . Evolutionary Musicology is the branch of Biomusicology (Wallin 1991) that studies the origins and evolution of music (Wallin, Merker and Brown 2000). For example, it studies the question of animal song and selection pressures underlying the evolution of music in humans and possibly in other species. 
	Computational Evolutionary Musicology
	-
	-

	In gross terms, whereas Artificial Life attempts to understand evolutionary processes via the computer simulation of life forms Memetics studies the replication, spread and evolution of information patterns called memes. A fundamental notion of Memetics is that cultural evolution can be modelled through the same basic principles of variation and selection that underly biological evolution. This implies a shift from genes as units of biological information to a new type of units of cultural information, whic
	-
	-
	-
	memes
	-

	Scholars throughout the ages have attempted to trace the origins of music. The book , by Thomas (1995) presents a review of the theories purported by philosophers of the French Enlightenment. For example, in his () the philosopher Rousseau (1990) described the earliest spoken languages as being composed of vocal inflexions such as warnings, cries for help and hunting-related shouts. In the beginning, he proposed, gestures were preferred to communicate rational ideas, whereas vocal utterances were primarily 
	Scholars throughout the ages have attempted to trace the origins of music. The book , by Thomas (1995) presents a review of the theories purported by philosophers of the French Enlightenment. For example, in his () the philosopher Rousseau (1990) described the earliest spoken languages as being composed of vocal inflexions such as warnings, cries for help and hunting-related shouts. In the beginning, he proposed, gestures were preferred to communicate rational ideas, whereas vocal utterances were primarily 
	Music and the Origins of Language
	Essai sur l’origine des langues 
	Essay on the origins of language

	music. Music, according to Rousseau, thus evolved from the sounds of passionate speech. 

	More recently, , by Mithen (2005), discusses this subject from an evolutionary perspective supported by archaeological evidence. Also, , edited by Wallin and colleagues (Wallin, Merker and Brown 2000), collates a series of chapters expressing a diversity of theories and viewpoints. 
	The Singing Neanderthals: The Origins of Music, Language, Mind and Body
	The Origins of Music

	Computational Evolutionary Musicology is in many ways akin to the computational modelling approach of Evolutionary Linguistics to study of the origins and evolution of language (Cangelosi and Parisi 2001; Christiansen and Kirby 2003), but its goals are more pragmatic, in the sense that they can readily inform the development of new technologies for music making. For instance, a better understanding of basic mechanisms of musical origins and evolution is of great importance for musicians looking for hitherto
	-
	-
	-
	abstract algorithmic 
	music knowledge-based
	-
	-

	Both classes of techniques have their merits and pitfalls. Abstract algorithmic techniques tend to produce rather complex music, most of which may sound too remote from what the majority of people, including expert listeners, would consider musical. This is possibly so because abstract algorithmic music tends to lack the cultural references that people normally rely upon when listening to music. Conversely, knowledge-based techniques tend to produce pastiches of existing musical pieces, which often are of l
	-
	-

	In this chapter, we explore some examples of Computational Evolutionary Musicology that employ a range of Artificial Life-inspired computational 
	In this chapter, we explore some examples of Computational Evolutionary Musicology that employ a range of Artificial Life-inspired computational 
	-

	approaches. We begin by describing a model for studying the role of mating-selective pressure in the evolution of musical taste. Next, we introduce a mimetic model for studying the evolution of musical lexicons in a community of autonomous robots furnished with a vocal synthesizer, a hearing apparatus and a memory device. Finally, we present the application of neural networks to evolving simple generative sequencing rules in a community of rhythm players and imitators. 
	-
	-


	10.2. Mating Selective Pressure and Surprise 
	Todd and Werner (1999) proposed a model for studying the role of sexual selection, specifically the selective pressure that comes from the processes of choosing mates, in the evolution of music. The model employs mating selective pressure to foster the evolution of fit composers of courting tunes. The model co-evolves ‘male’ composers who play simple musical tunes along with ‘female’ critics who judge these tunes and decide with whom to mate in order to produce the next generation of composers and critics. 
	Todd and Werner’s model is largely inspired by Charles Darwin’s theory of sexual selection as outlined in the book , where he argued that male birdsong had evolved via a mechanism of female choice (Darwin 1992). Miller (2000) attempted to take this notion even further by arguing that the evolution of human music was shaped by sexual selection to function as a courtship display. 
	The Descent of Man and Selection in Relation to Sex

	Each male composer holds a tune of 32 musical pitches from a set of 24 different pitches spanning two octaves. The female critics encode a transition-table that rates the transitions from one note to another in a heard tune. The table is a 24-by-24 matrix, where each entry represents the female’s expectation of the probability of one pitch following another in a song. Given these expectations, a critic can decide how well she likes a particular tune. When she listens to a composer, she considers the transit
	From the many different scoring methods proposed to judge the tunes, the one that seems to produce the most interesting results is the method whereby critics enjoy being surprised. Here the critic listens to each transition in the tune individually, computes how much she expected the transition and subtracts this value from the probability that she attached to the transition she most expected to hear. For example, if a critic has a value 0.8 stored in her transition table for the A–E transition, whenever sh
	Overall, this model has shown that the selection of co-evolving male composers who generate surprising tunes and female critics who assess these tunes according to their preferences, can lead to the evolution of structured melodies and the maintenance and continual turnover of tune diversity over time. 
	-

	In addition to mating selective pressure, this model embodies an important cognitive trait for survival: The ability to identify an unexpected element in a sequence of sound events. The preference for surprising tunes reflects this ability, which is very sophisticated in humans, even to the extent that our brain does not require our attention to perform this task. Neuroscientists have reported a component of the auditory event-relation potential (ERP), called mismatch negativity (MMN), which is elicited by 
	-
	-

	In Todd and Werner’s model, the composers are initiated with random tunes and the critics with transition tables set with probabilities calculated from given folk-tune melodies. There is, however, a puzzling fundamental question that has not been addressed in this model: Where could the expectations of the female critics come from if they are not to be built in by hand? Would it be possible to evolve such expectations from scratch? A model that may provide support for addressing this question is introduced 
	10.3. Social Bonding and Imitation: Evolution of Intonation 
	Miranda (2002b) proposed a mimetic model where a small community of interactive robots programmed with appropriate motor, auditory and cognitive skills can evolve a shared lexicon of sonic intonation patterns from scratch, after a period of spontaneous creation, adjustment and memory reinforcement. In this case, expectation is defined as a sensory-motor mechanism whereby the robots evolve vectors of motor control parameters to produce imitations of heard intonation patterns. The robots thus expect to hear p
	-
	-

	Intonation is generally defined as the melody of speech; it is characterized by the variations in the pitch of a speaker’s voice. The rationale for attempting to model the evolution of intonation patterns comes from the fact that intonation is fundamental for the development of vocal communication. There have been a number of research reports giving evidence that babies are born with an acute sensitivity to intonation (Locke 1993; Nazzi et al. 1998). This ability probably evolved due to the need for enhance
	Following this idea, Miranda’s robots are programmed with two fundamental instincts: 
	a) 
	a) 
	a) 
	To imitate what they hear 

	b) 
	b) 
	To foster social bonding 


	Imitation is defined here as the task of hearing an intonation pattern and activating the motor system to reproduce it. Sociability is assessed in terms of the similarity of the robots’ repertoires. In other words, in order to be sociable a robot must form a repertoire that is similar to the repertoire of its peers. The intonations thus create a social identity for the robots. 
	-

	The importance of imitation for evolution has gained much attention after the discovery of mirror neurons in the frontal lobes of macaque monkeys. Mirror neurons are neurons which fire both when an animal performs an action and when the animal observes the same action performed by another animal, especially of the same species. Thus, the neurons mirror the behaviour of another animal, as though the observers were themselves performing the action. These neurons have subsequently been observed in some birds a
	The importance of imitation for evolution has gained much attention after the discovery of mirror neurons in the frontal lobes of macaque monkeys. Mirror neurons are neurons which fire both when an animal performs an action and when the animal observes the same action performed by another animal, especially of the same species. Thus, the neurons mirror the behaviour of another animal, as though the observers were themselves performing the action. These neurons have subsequently been observed in some birds a
	monkeys, these monkeys have not been observed to imitate each other’s behaviour. It is questionable whether mirror neurons evolved for learning by imitation. Instead, their function might rather be to allow an individual to understand what another individual is doing or to recognize the other individual’s action. 

	The rationale for programming the robots with a drive for social bonding is supported by research by neurobiologists such as Freeman (1995), who brings his knowledge of brain chemistry to support the notion that music plays an important role in social bonding. According to Freeman, the brain releases oxytocin in the basal forebrain during group music making and dancing. The theory goes that by loosening synaptic links associated with prior knowledge, this hormone clears the path for the acquisition of new k
	Mithen (2005) also supports the notion that joint music making forges a group identity with high emotional content. ‘Hominids would have frequently and meticulously examined the likely intentions, beliefs, desires and feelings of other members of a group before deciding whether to cooperate with them. But on other occasions simply trusting them would have been more effective, especially if quick decisions were necessary.’ Those individuals who suppressed their own self-identity and instead forged a group id
	-
	-

	10.3.1. The Robots 
	The robots are equipped with a voice synthesizer, a hearing apparatus and a memory device. The model was initially implemented with software agents and the original interaction algorithms were largely inspired by the work of Luc Steels (1997) on evolutionary language games. Drouet subsequently helped to implement the robotic version described below, with refinements to the interaction algorithms (Fig. 10.1) (Miranda and Drouet 2006). 
	The voice synthesizer is essentially implemented as a physical model of the human vocal mechanism (Boersma 1993; Miranda 2002a). The robots need to compute three vectors of parameters in order to produce intonations: Lung pressure, the width of the glottis and the length and tension of the vocal chords, represented here as (), () and (), respectively. As for the hearing apparatus, it employs short-term autocorrelation-based analysis to extract the pitch contour of a vocal sound (Miranda 2001). The algorithm
	lung pressure
	n
	interarytenoid
	n
	cricothyroid
	n

	Essentially, a robot’s memory stores its repertoire of intonations, but it also stores other information such as probabilities, thresholds and reinforcement parameters. They have two distinct modules to store intonations in their memories: A motor map and a perceptual map. The motor map stores information in terms of three vectors of motor (vocal) parameters and the perceptual map stores information in terms of pitch contour. 
	Figure
	F10.1. The robotic implementation uses DRK8000 robots, manufactured by Dr. Robot. 
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	An intonation is represented as a graph whose vertices stand for initial (or relative) pitch points and pitch movements and the edges represent a directional path. Whilst the first vertex must have one outbound edge, the last one must have only one incoming edge. All vertices in between must have one incoming and one outbound edge each. Vertices can be of two types, initial pitch points (referred to as ) and pitch movements (referred to as ) as follows (Fig. 10.2): 
	p-ini
	p-mov

	SM, SL, SHVLSU, LSU, MSU, SSU, RSB, SSD, MSD, LSD, VLSD
	p-ini 
	= 
	{
	}
	p-mov 
	= 
	{
	} 

	where: 
	SM start the intonation in the middle register 
	SM start the intonation in the middle register 
	= 

	SL start the intonation in the lower register 
	= 

	SH start the intonation in the higher register 
	= 


	Figure
	F10.2. The representation of an intonation, where () indicates an ordered sequence of pitches. 
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	and 
	VLSU very large step up 
	VLSU very large step up 
	= 

	LSU large step up 
	= 

	MSU medium step up 
	= 

	SSU small step up 
	= 

	RSB remain at the same band 
	= 

	SSD small step down 
	= 

	MSD medium step down 
	= 

	LSD large step down 
	= 

	VLSD very large step down 
	= 


	An intonation will invariably start with a , followed by one or more . It is assumed that an intonation can start at three different voice registers: Low (SL), middle (SM) and high (SH). Then, from this initial point (), 0the next pitch at (1) might jump or step up or down and so forth. 
	p-ini
	p-movs
	{
	t
	n
	n 
	= 
	} 
	t
	n 
	+ 

	It is important to note that labels or absolute pitch values are not relevant here because this scheme is intended to represent abstract melodic contours rather than a sequence of musical notes drawn from a specific tuning system. The tuning should emerge during the interactions. 
	10.3.2. The Algorithms 
	The main algorithms for the robotic interactions are given as follows: 
	Algorithm 1: Robot-player produces an intonation 
	1. 
	1. 
	1. 
	Motor control[] in (robot-player) 
	α
	⇐ 
	pick-any-motor-control 
	Motor-Repertoire


	2. 
	2. 
	(motor control[]) 
	synthesize-sound
	α



	Algorithm 2: Robot-imitator produces an imitation 
	3. 
	3. 
	3. 
	perceive-intonation 
	Pitch vector[
	β
	] 
	⇐ 


	4. 
	4. 
	Intonation[] (pitch vector[]) 
	β
	⇐ 
	perceptual-representation
	β


	5. 
	5. 
	Intonation[] (intonation[]) in (robot-imitator) 
	
	⇐ 
	search-similar
	β
	Perceptual-Repertoire 


	6. 
	6. 
	Motor control[] (motor-control[intonation[]) 
	
	⇐ 
	retrieve motor control
	


	7. 
	7. 
	(motor control[]) 
	synthesize-sound
	



	Algorithm 3: Robot-player hears the imitation and gives a feedback 
	8. 
	8. 
	8. 
	perceive-imitation 
	Pitch vector[
	ψ
	] 
	⇐ 


	9. 
	9. 
	Imitation[] (picth vector[]) 
	ψ
	⇐ 
	perceptual-representation
	ψ


	10. 
	10. 
	Intonation[] (imitation[]) in (robot-imitator) 
	φ
	⇐ 
	search-similar
	ψ
	Perceptual-Repertoire 


	11. 
	11. 
	Intonation[] (motor control[]) 
	α
	= 
	perceptual-representation
	α


	12. 
	12. 
	IF intonation[] intonation[] 
	α
	= 
	φ


	13. 
	13. 
	THEN feeback 14. 
	{ 
	⇐ 
	positive 


	(motor control[]) in (robot-player) 15. (intonation[])in(robot-player)
	(motor control[]) in (robot-player) 15. (intonation[])in(robot-player)
	reinforce
	α
	Motor-Repertoire
	reinforce
	α
	Perceptual-Repertoire
	}


	16. 
	16. 
	ELSE feeback 
	{ 
	⇐ 
	negative 
	}


	17. 
	17. 
	output-signal
	(feedback) 



	Algorithm 4: Robot-imitator reacts to robot-player’s feedback 
	18. 
	18. 
	18. 
	IF feedback 
	= 
	positive 


	19. 
	19. 
	THEN (intonation[] intonation[]) in (robot-imitator) 
	{ 
	approximate
	
	→ 
	β
	Perceptual-Repertoire


	20. 
	20. 
	reconfigure motor control
	reconfigure motor control
	(intonation[
	
	]) 

	in (robot-imitator) 
	in (robot-imitator) 
	in (robot-imitator) 
	Motor-Repertoire





	21. 
	21. 
	intonation[]in (robot-imitator) 
	reinforce 
	
	Perceptual-Repertoire


	22. 
	22. 
	motor control()in(robot-imitator)
	reinforce
	Figure
	
	Motor-Repertoire
	}


	23. 
	23. 
	ELSE IF feedback 
	= 
	negative 


	24. 
	24. 
	THEN IF (intonation[]) > success-threshold 
	success-history
	


	25. 
	25. 
	produce-new-motor-control 
	produce-new-motor-control 
	THEN
	{ 
	motor 
	Figure
	control[
	λ
	]
	⇐
	26. 

	perceptual-representation 
	perceptual-representation 
	perceptual-representation 
	perceptual-representation 
	Intonation[
	λ
	]
	⇐ 

	(motor control[]) 
	(motor control[]) 
	(motor control[]) 
	λ








	27. 
	27. 
	(intonation[]) 
	(intonation[]) 
	save-new
	λ

	to (robot-imitator) 
	to (robot-imitator) 
	to (robot-imitator) 
	Motor-Repertoire





	28. 
	28. 
	(motor control[]) 
	(motor control[]) 
	save-new
	λ

	Perceptual-Repertoire
	Perceptual-Repertoire
	Perceptual-Repertoire
	to 
	(robot-imitator) 
	}





	29. 
	29. 
	ELSE (intonation[] intonation[]) in (robot-imitator) 
	{ 
	distantiate
	
	↔ 
	β
	Perceptual-Repertoire


	30. 
	30. 
	(intonation[]) in (robot-imitator) 
	reconfigure motor control
	
	Motor-Repertoire
	} 



	Algorithm 5: End of interaction updates 
	31. 
	31. 
	31. 
	interaction-updates
	(robot-player) 


	32. 
	32. 
	interaction-updates
	(robot-imitator) 



	Figs. 10.3, 10.4 and 10.5 give a glimpse at the functioning of these algorithms. For didactic purposes, these are reduced two-dimensional representations of the motor and perceptual repertoires; the co-ordinates do not fully correspond to the actual motor and perceptual representations. The numbers in the figures indicate actions corresponding to the line numbers of the algorithms. 
	All robots have identical synthesis and listening apparatuses. At each round, each of the robots in a pair plays one of two different roles: The and the . The robot-player starts the interaction by producing an intonation , randomly chosen from its repertoire. The robot-imitator then analyses the intonation , searches for a similar intonation in its repertoire and produces it. The robot-player in turn hears and analyses the intonation and checks if its perceptual repertoire holds no other intonation that is
	robot-player 
	robot-imitator
	-
	α
	α
	 
	 
	φ 
	 
	α 
	φ 
	 
	α 
	-
	α 
	α 
	β 
	 
	β 
	 
	ψ 

	Figure
	F10.3. Example of an unsuccessful imitation. 
	IGURE 

	repertoire the intonation that is most perceptually similar to the imitation (10). The robot-player babbles the original intonation to itself (11) and it concludes that and are different (12). In this case the robot-player sends a negative feedback to the robot-imitator (17), indicating that the imitation is unsatisfactory. 
	φ 
	ψ 
	α 
	α 
	φ 

	When an imitation is unsatisfactory the robot-imitator has to choose between two potential courses of action. If it finds out that is a weak intonation in its memory (because it has not received enough reinforcement in the past) then it will move it away from slightly, as a measure to avoid repeating this mistake again. But if is a strong intonation (due to a good past success rate), then the robot will leave untouched (because it has been successfully used in previous imitations and a 
	 
	α 
	 
	 

	Figure
	F10.4. An example where the unsuccessful imitation involved an intonation that has a poor past success rate. 
	IGURE 

	few other robots in the community also probably consider this intonation as being strong) and will create a new intonation similar to to include it in its repertoire; that is, the robot produces a number of random imitations and then it picks the one that is perceptually most similar to . Let us assume that the intonation in Fig. 10.3 has a good past success rate. In this case, the robot-imitator leaves it untouched and creates a new intonation to include in its repertoire (25, 26). 
	λ 
	 
	
	 
	λ 

	Fig. 10.4 shows what would have happened if the intonation did not have a good past success rate: In this case the robot-imitator would have moved away from slightly (29 and 30). Finally, Fig. 10.5 shows what would have happened 
	 
	 
	β 

	Figure
	F10.5. An example of a successful imitation. 
	IGURE 

	if the robot-player had concluded that and were the same, meaning that the imitation was successful. In this case, the robot-imitator would have reinforced the existence of the intonation in its memory and would have moved it slightly towards the representation of the heard intonation . 
	α 
	φ 
	 
	β

	Before terminating the round, both robots perform final updates. Firstly they scan their repertoire and merge those intonations that are considered to be perceptibly close to each other; the merge function removes two intonations and creates a new one by averaging their values. Also, at the end of each round, both robots have a certain probability of undertaking a spring-cleaning to get rid of weak intonations; those intonations that have not been sufficiently reinforced are forgotten. Finally, at the end o
	-
	P
	b 
	-
	P
	a 

	10.3.3. A Typical Simulation Example 
	The graph in Fig. 10.6 shows a typical example of the evolution of the average repertoire of a group of five interacting robots, with snapshots taken after every 100 interactions over a total of 5000 interactions. The robots evolved repertoires averaging 12 intonations each. (Note that some may have developed more or less than 12 intonations.) After a drastic increase of the repertoire at about 800 interactions, the robots settled to an average of seven intonations each until about 2200 interactions, when a
	Figure
	F10.6. The evolution of the average size of the repertoire of intonations of the whole group of robots. In this case the group developed an average repertoire of 12 intonations. 
	IGURE 

	Figure
	F10.7. The imitation success rate over time. 
	IGURE 

	average of nine intonations until about 3800 interactions. From 3800 interactions onwards the robots steadily increased their repertoires. The pressure to increase the repertoire is mostly due to the probability of creating a new random intonation, combined with the rate of new inclusions due to unsatisfactory imitations. The size of the repertoire tends to stabilize with time because the more the robots use strongly settled intonations, the more these intonations are reinforced in their repertoires and the
	P
	a 

	The graph in Fig. 10.7 plots the imitation success rate of the community, measured at every 100 interactions. Note the decrease of imitation success rate during those phases when the robots were increasing the size of their repertoires. Although the repertoire size tends to increase with time, the success rate tends to stay consistently high. However, this is highly dependent upon the number of robots in the group. The higher the number of robots, the deeper the fall of the success rate and the longer it ta
	-
	-

	Fig. 10.8(a) portrays the perceptual memory of a robot randomly selected from the group after 5000 interactions. In this case the length of the intonations varied from three to six pitches. (The minimum and maximum length of the intonation to be evolved is fixed beforehand.) This particular robot evolved 11 intonations; one below the average. Fig. 10.8(b) shows only those intonations that are three pitches long. 
	An interesting feature of this model is that the lexicon of intonations emerged from the interactions of the robots. The actions of each robot are based solely upon their own evolving expectations. Also, the robots do not necessarily have to evolve the same motor representations for what is considered to be perceptibly identical. 
	Figure
	Figure
	F10.8. (a) The perceptual memory of one robot. (b) Only those intonations that are three pitches long. For the sake of clarity, the background metrics and labels of the graphs are not shown. 
	IGURE 

	Figure
	Figure
	F10.9. (a) One of the perceptual patterns from Fig. 10.8(b) and its corresponding motor control vectors developed by three different robots, (b) the vector, (c) the vector and (d) the vector. 
	IGURE 
	lung pressure 
	cricothyroid 
	interarytenoid 

	Figure
	Figure
	Continued
	F
	IGURE 
	10.9. (
	) 

	Fig. 10.9 shows the motor functions evolved by three different robots to represent what is essentially the same intonation. 
	The imitation of an intonation pattern requires the activation of the right motor parameters in order to reproduce it. The robot-imitators assume that they 
	-

	always can recognize everything they hear because in order to produce an imitation a robot will use the motor vectors that best match its perception of the sound in question. It is the robot-player who will assess the imitation based on its own expectations. Expectation here is a social convention but it is grounded on the nature of their sensory-motor apparatus. This mechanism provides a robot with the rudiments of the ability to appreciate the knowledge of another robot from its own perspective. Intuitive
	-
	-
	-

	Both models discussed in this chapter so far deal with short intonations. But how about dealing with longer pitch sequences or proper musical compositions? Although the symbolic sensory-motor-like memory mechanism proposed for storing intonations served well the objectives of the model presented above, we must admit that it is not efficient for storing longer pitch sequences, let alone fully fledged pieces of music. In order to increase the complexity of the model, it is necessary to improve the memory mech
	-

	10.4. Toward a Connectionist Memory for Evolving Sequencing Rules 
	Jo˜ao Martins developed a tentative connectionist memory for the aforementioned interacting robots consisting of two neural-network modules: A perceptual module and a categorization module. The former implements a Sardnet (for self-organizing activation, retention and decay network) neural network and the latter uses a feed-forward neural network. 
	The input for the perceptual module is a sequence of sounds, which produces a pattern of activations on the Sardnet, representing the types of sounds and their position in the sequence. The pattern of activations then becomes the input for the categorization module, which, as its name suggests, categorizes this information. 
	-

	Each sound in the sequence presented to the Sardnet is represented as a vector of three variables. The first variable indicates its timbre, the second its loudness and the third the inter-onset interval (IOI) in milliseconds; pitch is not taken into account here. An inter-onset interval is the time between the beginnings or attack-points of successive sounds, not including their durations. For example, two 16notes separated by a dotted eighth rest would have the same inter-onset interval as between a quarte
	th 
	th 
	= 
	= 
	= 

	10.4.1. The Perceptual Module 
	The Sardnet is a self-organizing neural network for the classification of sequences (James and Miikkulainen 1995). The Sardnet is an extension of the self-organizing map (Som), which is a neural network used for unsupervised learning developed by Kohonen (1997). Fig. 10.10 shows a Som with 16 output nodes and one input vector , where is the index of the sound event in the sequence. The dimension of determines the dimension of the weights vector for each node. The Euclidean distance measure determines the di
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	where is the input vector, with index in the sequence, is the weight vector of the corresponding node and is the dimension of both and . 
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	The Som (Fig. 10.10) is also referred to as a competitive network or ‘winner-takes-all net’, because only the node whose weight vector is the closest to the input vector wins the activation. The weight vector of the winning node is subsequently updated in order to render its values even closer to the values of the input vector. The neighbouring nodes of the winning node are also similarly updated to a lesser degree according to a neighbourhood function that organizes representations of similar stimuli on th
	The Sardnet carries forward most of the essential features of the Som, but adds two important features, which enables it to deal with sequences of events: 
	a) 
	a) 
	a) 
	The neuron that wins the competition for being closest to the input at one point in time is removed from subsequent competitions 

	b) 
	b) 
	All previous neuron activations decay at each time step 


	The dynamics of the Sardnet is illustrated in Fig. 10.11. Here a stream of events at the input activated three nodes sequentially: , and , respectively. The training algorithm for the Sardnet is as follows: 
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	Figure
	F10.10. Kohonen’s self-organizing map (Som). is the input vector and the are the weight vectors, which define the distance between the input vector and the various nodes of the network. In this example, the winner is node with 05. 
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	INITIALIZATION: 
	Reset the network 
	MAIN LOOP: 
	While not end of sequence do: 
	1. 
	1. 
	1. 
	Find inactive neuron that best matches the input 

	2. 
	2. 
	Assign activation 1.0 to the found unit 
	= 


	3. 
	3. 
	Adjust weight vectors of the neurons in the neighbourhood 

	4. 
	4. 
	Exclude the winning neuron from subsequent competitions 

	5. 
	5. 
	Decrement the activation values for all other active neurons 


	RESULT: 
	Activated nodes ordered by activation values. 
	As with the Som network, the Sardnet uses the same distance (,)to estimate which node’s weight vector best matches the input vector. In step 3 of the main loop of the training algorithm shown above, the weights of the winning neuron and of the neighbourhood neurons are changed according to the following adaptation rule: 
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	where and are the spatial coordinates of the network, is the index of the 
	j
	k 
	i 

	Figure
	F10.11. The Sardnet, with variable activation of three nodes sequentially, indicated by different colours: from black (node , the last in the sequence) to light grey (node , the first in the sequence). 
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	individual components of the vectors and denotes the learning rate of the Sardnet. 
	α 

	All active neurons are decayed proportionally to the decay parameter as follows (step 5 of the main loop): 
	d 

	ηjk (t + 1) = dηjk (t ), 0<d <1 
	where is the value for the activation of the network in the element ( ). 
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	10.4.2. Categorization Module 
	The categorization module is a feedforward neural network (also called Multi-layer Perceptron) for learning patterns of activity with layers of nodes interconnected in a feed-forward way. Each input node is fully connected to the middle layer (referred to as the hidden layer) of nodes and each node of the hidden layer is subsequently connected to every output node (Fig. 10.12). The outputs of the network are explicit functions of activations in the hidden layer, which are themselves functions of the input n
	Figure
	F10.12. A generic feedforward neural network. are the input nodes, are the hidden nodes and the output nodes. corresponds to the strengths (or weights) of the connections between the nodes and . 
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	The network uses the backpropagation algorithm to adjust its weights in order to best match the values of the input nodes to a desired set of values at the output nodes. 
	The number of inputs to the categorization network must be the same as the number of units in the Sardnet, because each Sardnet unit becomes an input to the feed-forward network. The number of output neurons is arbitrarily set to three because it facilitates the visualization of the resulting categorization in a tri-dimensional plotting. 
	-

	10.4.3. Assessing the Behaviour of the Networks 
	As an example, let us consider an agent with a Sardnet of 50 nodes (10 5) with a learning rate 0.1. The network is initialized with random values for weight vectors in the range of 1 to 1. Assume that five rhythmic sequences played on one or two percussion instruments each (Fig. 10.13) are fed into the network a number of times. 
	×
	∝=
	−

	After a few iterations, an organization pattern begins to emerge. The graphs in Fig. 10.14 show the evolution of the input weights corresponding to the inter-onset intervals (IOI) (the third component of the input vectors). Fig. 10.14(a) shows the initial value of the weights, as explained above and Fig. 10.14(b) shows the pattern of IOI weight values that emerged after 20 iterations. Then graph 14(c) shows the values of IOI weights that emerged after 80 iterations and 14(d) shows the difference between the
	Now, let us consider that the agent has a categorization network with 50 input units, whose values are given by the activations patterns of the Sardnet. These input nodes are fully connected to three nodes forming the hidden layer, which in turn are fully connected to three output nodes. This allows for straightforward visualization of the categorization of the rhythms in a tri-dimensional space. The first three activation layers of 50 Sardnet nodes corresponding to three rhythms were used to train the feed
	Figure
	F10.13. The five training rhythmic sequences. 
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	Figure
	F10.14. The evolution of the weights corresponding to IOI without change of neigh-bourhood: (a) Random initialization of weight values; (b) After 20 iterations; (c) After 80 iterations; (d) Difference between the sum of the weights for consecutive iterations. 
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	output targets: [0, 0, 1], [1, 0, 0] and [0, 1, 0]. The three learned rhythms are marked with an ‘o’ in the categorization space (Fig. 10.15). Next, the Sarnet nodes corresponding to the remaining two rhythms were fed into the feedforward network. These are marked with an ‘x’ in the categorization space. Clearly, the 
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	Figure
	F10.15. The tri-dimensional categorization space. 
	IGURE 

	agent is able to distinguish the latter two rhythms from the previous three. This example shows the meaning of the categorization space: For this case the extreme points are the ones acknowledged by the agent as being part of its own repertoire. 
	As an initial step to test if this architecture would be suitable to be used as a memory mechanism to evolve and store information about sound sequences, two robots were programmed with a Sardnet with 400 (20 20) nodes coupled with a feedforward network with 400 input nodes, three nodes in the hidden layer and three output nodes. The choice for number of input nodes is a trade-off between scale and computational weight. The size of the network determines the number of different events that can be encoded, b
	× 
	α 
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	σ 
	= 

	The Sardnet of one of the robots (the robot-player) was trained with eight rhythms (the five ones shown in Fig. 10.13 plus additional three) for 100 iterations. Then its feedforward network was trained with the backpropagation algorithm to respond to these rhythms in the extreme positions of the categorization space. Fig. 10.16(a) depicts the robot-player’s pattern of IOI weights, which emerged after the 100 iterations. Fig. 10.17(a) shows the categorization of the rhythms in the tridimensional categorizati
	The other robot (the robot-imitator) was not trained. Its task was to evolve its own rhythmic categorization by imitating the rhythms produced by the robot-player. 
	(a) 0 5 10 15 20 0 5 10 15 20 0 100 200 300 400 500 600 
	F10.16. (a) Robot-player’s map of the IOIs; (b) Robot-imitator’s map of the IOIs. 
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	The interaction is as follows: The robot-player plays rhythms randomly picked from its memory and the robot-imitator tries to imitate them. The robot-imitator’s learning takes place during this process of imitation. The robot-imitator’s neural networks are programmed with the same parameters as the robot-player. Each time the robot-imitator hears a rhythm, it calculates its respective position in its categorization space. Then it ‘babbles’ a few rhythms (i.e. it generates random rhythms and categorises them
	a) 
	a) 
	a) 
	Satisfactory: The imitation is closer to the original rhythm than to any other rhythm in its categorization space. 

	b) 
	b) 
	Unsatisfactory: The imitation is closer to a rhythm other than the original rhythm in its categorization space. 


	If the imitation is satisfactory, then the feedforward network of the robot-imitator is trained with one iteration of the backpropagation algorithm to respond to the desired category. Conversely, if the imitation is unsatisfactory, then the robot-imitator will benefit only from the adaptation of the Sardnet weights according to its self-organizing behaviour. 
	(a) 00.20.40.60.811.2 0 0.5 1 0 0.2 0.4 0.6 0.8 1 1.2 
	(b) 0.30.350.40.450.50.550.60.650.7 0.3 0.4 0.5 0.6 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 
	F10.17. (a) The robot-player’s trained categories; (b) The categorization map of the robot-imitator at very early stages of the learning process; (c) The categorization map of the robot-imitator at a very late stage of the learning process. 
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	Fig. 10.16(b) portrays the Sardnet of the robot-imitator after 80 interactions, which is slightly different from the Sardnet of the robot-player, although they seem to be representing the same rhythms. 
	Fig. 10.17 shows the categorization maps for both robots. Notice that initial categories of the robot-imitator in Fig. 10.17(b) do not match the categories of the robot-player in Fig. 10.17(a), but as the learning process progressed, the categories converged to the extreme points of the tri-dimensional space in Fig. 10.17(c). 
	A preliminary test of the connectionist memory demonstrated that it is possible to combine the learning capabilities of neural networks with the dynamics of the mimetic model introduced in Section 3. At the time of writing, the connectionist memory is being further improved (e.g. to include information about pitch and timbre) and embedded in the mimetic robotic model. 
	10.5. Concluding Remarks 
	This chapter provided a glimpse of the exciting new field of Computational Evolutionary Musicology by demonstrating how music can be studied as an adaptive complex dynamic system. In this context, the origins and evolution of music can be studied using computer models and robotic simulations. 
	-

	One interesting hypothesis that is emerging from the research of a number of scholars is that there might have been a single precursor for both music and 
	One interesting hypothesis that is emerging from the research of a number of scholars is that there might have been a single precursor for both music and 
	language: A communication system that had the characteristics that are now shared by music and language, but split into two systems at some date in our evolutionary history. For instance, Steven Brown (2000) refers to this single precursor as , whereas Alison Wray (1998) proposed the notion , which essentially is the same thing. 
	-
	musilanguage
	holistic proto-language


	In the introduction we suggested that it would be perfectly plausible to suggest that robots might be able to evolve music. Then we demonstrated how this can be done. However, we acknowledge that the examples introduced here cannot evolve proper music yet, but rather the rudiments of what one might refer to as . 
	proto-music

	Much work is still needed in order to embed the robots with the minimum necessary physiological and cognitive abilities to evolve music. Nevertheless, the models discussed in this chapter are encouraging in the sense that they provide strong indications that music might indeed emerge in a society of interacting autonomous robots. 
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