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Patch leaving in humans: can a generalist adapt its rules 
to dispersal of items across patches? 
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We used a computer game to examine three aspects of patch-leaving decisions in humans: how well do 
humans perform compared to the optimal policy, can they adjust their behaviour adaptively in response 
to different distributions of prey across patches and on what cues are their decisions based? Subjects earned 
money by catching fish when they briefly appeared within a pond; the timing of appearances was stochas-
tic but at a rate proportional to how many fish remained. Caught fish were not replaced and ponds varied 
in how many fish they initially contained (according to three different distributions). At any point subjects 
could move to a new pond, but travel took some time. They delayed this switch much too long. Further-
more, regardless of the distribution of prey, subjects spent longer at ponds where they had found more 
items (contrary to optimality predictions in two of the environments). However, they apparently re-
sponded not to the number of captures directly (despite this appearing on screen) but to the current in-
terval without a capture, to the interval preceding the last capture, and to the time spent at the current 
pond. Self-reports supported this order of cue importance. Subjects often left directly after a capture, per-
haps an example of the Concorde fallacy. High success rate in the preceding patch decreased residence 
time and subjects appeared to be learning to leave earlier over the latter two thirds of the experiment. Min-
imization of delay to the next capture alone might explain some of the suboptimal behaviour observed. 
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Suppose, like one of us, that you sometimes spend a week dispersed across suitable patches. One can gauge this only 

turning over thousands of leaves on the forest floor search-
ing for slugs. Twenty minutes can often pass without 
finding one and before then you would probably already 
have moved on and tried another likely looking hollow. But 
if you have found one or two specimens in a particular spot, 
should you stick there because it appears a good spot or 
move because it is liable to be exhausted? These conflicting 
arguments must often have concerned our hunteregatherer 
ancestors. The answer depends on how evenly prey are 
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from foraging success at nearby spots searched earlier, 
although prior experience elsewhere with similar prey 
might help suggest which patch-leaving rules work best. 

Optimal foraging theory has provided the optimal 
solution to the problem, although only once the prey 
distribution has already been learnt. The classic result is 
the marginal value theorem (Charnov 1976), that foragers 
should leave a patch when the current rate of return falls 
below the mean rate under the optimal strategy. However, 
this rule becomes only an approximation to the solution 
when patches contain few discrete items, because stochas-
ticity disrupts estimation of current rate of return. Pres-
ently we detail the optimal strategies in this case. 

Numerous studies have tested how well animals ap-
proximate these optimal policies (Nonacs 2001), mostly in 
ovipositing insect parasitoids (van Alphen et al. 2003; 
Wajnberg 2006) but also in fish, birds and mammals 
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(e.g. Ydenberg 1984; Redhead & Tyler 1988; Marschall 
et al. 1989; Kamil & Clements 1990; Kramer & Weary 
1991; Agetsuma 1999; van Gils et al. 2003). However, we 
have found scarcely any tests on humans. In this study 
we used a computer game, based on fishing at a succession 
of ponds, to measure how well humans perform compared 
with the optimal solution. We also investigated the cues 
and rules of thumb used to decide when to switch patches. 
Thirdly we tested whether humans adjust their strategy to 
the distribution of prey, as they should. Humans are a par-
ticularly appropriate animal for this test because we are ex-
treme generalists and should surely be adapted to forage 
on some foods that are evenly distributed across suitable 
patches and some that are concentrated in a minority. Al-
ternatively, rather than facultatively adjusting, do we 
gamble on the commonest sort of distribution (probably 
aggregated) or perhaps use a robust rule that performs rea-
sonably well with all distributions? 
Previous Work on Humans 
Anthropologists have invoked the marginal value the-
orem to elucidate a variety of decisions of native peoples: 
when to leave one hunting or fishing ground, when to 
move herds to fresh pasture, when to cultivate a new 
patch of forest (Smith & Wishnie 2000), how far food is 
processed before carrying it home (Metcalfe & Barlow 
1992) and how much a carcass is butchered (Burger 
et al. 2005). It is also often invoked as a more parsimoni-
ous explanation of cases of apparent conservation, be-
cause it predicts switching patches before complete 
depletion (Smith 1983; Smith & Wishnie 2000). However, 
anthropologists’ tests of whether humans really follow 
the optimality predictions are qualitative and weak 
(among the stronger examples are Smith 1991 and 
Aswani 1998). 

The patch-leaving analogy has also been invoked by 
cognitive scientists to model foraging for information 
(Pirolli & Card 1999; Pirolli 2005). For instance Pirolli 
(2005) studied when subjects started anew with an Inter-
net search (cf. switching patches) instead of following 
links within the current web page (cf. foraging within 
a patch). However, the model that Pirolli (2005) applied 
to explain these data was unconnected with those consid-
ered in behavioural ecology. 

The data most relevant to patch-leaving decisions of 
humans come from operant experiments (Wanchisen 
et al. 1992; Hackenberg & Axtell 1993). Subjects had to 
press a key numerous times to get a reward. For one option 
(progressive ratio) the required number increased with 
each trial (cf. patch depletion). For the alternative option 
(fixed ratio) the required number was fixed, and, crucially, 
choosing this option reset the number of presses required 
by the progressive-ratio option to the minimum (cf. travel 
to a fresh patch). Subjects responded adaptively to 
changes in the fixed-ratio requirement and often found 
the optimal response. Results were similar when subjects 
had merely to wait particular times after selecting an 
option before receiving each reward (progressive interval; 
Hackenberg & Axtell 1993). 
Evidence of Adjustment to Dispersion across 
Patches 
Patch-leaving decisions are known to adjust faculta-
tively to a variety of aspects of the environment (e.g. 
previous patch quality, prior experience of competitors, 
perceived mortality risk, travel time: Roitberg et al. 1993; 
Visser et al. 1992; Cuthill et al. 1994; Goubault et al. 
2005; Tentelier et al. 2006; Wajnberg et al. 2006). Also, dif-
ferent species and populations of parasitoid wasps are 
hardwired to use different patch-leaving rules that would 
adapt them to different degrees of host dispersal across 
patches (Wajnberg et al. 1999, 2003). But few studies 
have tested for a similar facultative adjustment. 

Vos et al. (1998) studied switching behaviour in a para-
sitoid of two congeneric hosts, one with an aggregated dis-
persion and one more solitary. The cues that were 
significant in each environment (host) differed appropri-
ately (although the difference was not formally tested). 
However, the parasitoids might feasibly use host identity 
as a cue to switch between alternative hardwired rules, 
whereas our human subjects could learn the distribution 
and appropriate rules only from their own foraging suc-
cess on a novel resource. Three experiments involving par-
asitoids, fish and birds have failed to detect such an ability 
(Marschall et al. 1989; Dall 1995, chapter 5; Burger et al. 
2006). But, although one experiment in blue jays, Cyano-
citta cristata, also failed to find a difference (Kamil & Yoerg 
1985), another suggested greater dependence on time 
since the last capture when patch quality was more vari-
able (Kamil & Clements 1990). Two other examples also 
show an ability to change the form of a rule in a way 
which would enable adaptation to different dispersions 
(see Theory and Predictions), although other factors trig-
gered the change. Great tits, Parus major, switched either 
after a fixed number of rewards or after a particular 
giving-up time, depending on whether intercapture inter-
vals were deterministic or stochastic (Ydenberg 1984). And 
in one insect parasitoid species ovipositions either in-
creased or decreased tendency to switch, depending on 
egg load (Outreman et al. 2005). 
THEORY AND PREDICTIONS 

Our experiment involves a solitary forager encountering 
prey randomly in a patch, with encounter rate propor-
tional to number of prey remaining. Iwasa et al. (1981) 
showed that, if the forager knows the distribution of the 
number of items per patch, the a posteriori probability 
that n items remain depends on only the number of items 
caught in the current patch (N ) and the time spent on it 
(T ). The optimal policy when to switch patches thus 
also depends on only N and T. There is no additional ad-
vantage to remembering time since the last prey capture 
(I ) or timings of earlier captures. Given this, the optimal 
policy may be calculated by dynamic programming (e.g. 
Green 1980, 2006; Olsson & Holmgren 1998). 

The optimal policy specifies whether to leave or stay 
given each combination of N and T and its form depends 
on the distribution of items per patch (Iwasa et al. 1981; 
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Green 1987). If the number of items per patch is Poisson 
distributed, the forager should leave each patch after 
a fixed time (excluding times spent handling prey) inde-
pendent of foraging success (‘fixed-T rule’). With more ag-
gregated distributions than Poisson, each capture should 
extend residence time, because a capture suggests high 
patch quality (‘incremental rule’). Conversely with distri-
butions more dispersed than Poisson, each capture should 
decrease residence time (‘decremental rule’). The extreme 
case is an even distribution of items across patches, where 
it is optimal to leave once a fixed number of items (not in 
general all) are caught, regardless of when this happens 
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Figure 1. (a) Optimal switching lines for each environment: on arriving at

should occur when the appropriate switching line is crossed. Dots and the
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sociated with the mean quality not being integral, and the line for the Po
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The dots are 100 giving-up points generated by simulations of the giving

(b), except that the switching points were those observed, and the regr
(‘fixed-N rule’). Figure 1a shows the optimal policies for 
the four environments used in our experiment (detailed 
under Methods). 

The fixed-N and fixed-T policies appear particularly easy 
to follow, and the other cases may be approximated by 
simple mechanisms analogous to a clockwork egg timer 
(Waage 1979; Ollason 1980; Green 1984; Stephens & 
Krebs 1986, chapter 8; Pierre et al. 2003). When the patch 
is entered the timer is wound up a certain amount; it then 
runs down until the ‘ping’ triggers leaving, but meanwhile 
each capture leads to extra winding up (incremental rule) 
or down (decremental). 
0 100 200 300 400 500 

0 100 200 300 400 500

t pond (s) 

Regression, experimental data

Regression, optimal policy 
25 

20 

15 

10 

0 

5 

25 

20 

15 

10 

0 

5 

(b)

(d)

 a pond the position in NeT state space is at the origin and switching 

 thick black line show the range of switching points exhibited in 95% 

uld be horizontal were there not slight variation in patch quality as-
isson environment would be vertical were it not for the 3-s handling 

cessible. (b) Regression lines fitted to the switching points generated 

t; dotted line ¼ Poisson; thin solid line ¼ aggregated with travel time 

t the policy is the giving-up-time rule optimal for each environment. 
-up-time rule optimal in the aggregated v ¼ 25 environment. (d) As 

ession includes subject as a random factor. 



ANIMAL BEHAVIOUR, 75, 4  1334 
We have also examined whether subjects used other 
decision heuristics, possibly based on cues besides N and 
T. A prominent example is to switch after a fixed period 
of time without a capture, or since entering the patch if 
that is later (Iwasa et al. 1981; Green 1984, 1987); this is 
the ‘giving-up-time rule’ (McNair 1982). In the environ-
ments in our experiment, this rule can perform 88e97% 
as well as the optimal policy (Table 1). Its best perfor-
mance was in the aggregated environments, because the 
giving-up-time rule resembles an incremental rule (opti-
mal there) in that each capture postpones departure. 
Thus a giving-up-time rule also generates a positive rela-
tionship between NS and TS (the values of N and T at 
switching); the scatter of points generated by the best 
giving-up time has a slope similar to that of the optimal 
policy in our aggregated environments (Fig. 1c, Table 1). 

Another reason to consider alternative cues, even 
though they are in theory unnecessary, is that the simple 
policies in Fig. 1a are optimal only when the distribution 
of patch quality is known. Initially, and probably through-
out our short experiment, subjects should try both to 
make good decisions with imperfect knowledge of this dis-
tribution and to learn about it (or try out different rules) so 
as to perform better in the future. In this situation ex-
perience at earlier patches should influence the strategy 
subsequently applied. Information on intervals between 
captures is still superfluous if N and T on the current 
and past patches are properly taken into account. Never-
theless the optimal policy is not so simple as that in 
a known environment, so simpler rules of thumb using 
alternative cues may provide more attainable solutions. 

In this context of uncertainty about the environment, 
the giving-up-time rule sometimes has a strength in being 
robust. Table 2 shows the performance of the policy opti-
mal in our even environment when transferred to the ag-
gregated environment and vice versa. Performances are 
worse than those for a giving-up-time rule or fixed-T rule 
adapted to one environment but transferred to the other. 
The giving-up-time rule is not always more robust (e.g. 
when travel times are swapped: Table 2; Green 1984 
provides another example). However, because giving-up-
time rules measure rate over a shorter time window than 
N and T, they should be more robust to within-patch en-
vironmental changes, as when suddenly all prey hide in 
a refuge (cf. Shettleworth & Plowright 1992). 
Table 1. Performance under the optimal and constrained-optimal strate

Environment 

Maximum gain 

rate (fish/s) 

Giving-

Optimal 

threshold (s) 

Even 0.0293 40 
Poisson 0.0280 39 
Aggregated v¼25 s 0.0312 36 
Aggregated v¼15 s 0.0346 31 

The optimal policy is compared against rules in which subjects switch afte
patch (excluding handling times). These constrained optima were calcu
relative performances are given as a fraction of the long-term gain rate 
METHODS 

The 100 human subjects (64 women, 36 men; age ranges 
19e30 and 22e31 years, means 25 and 27 years) carried 
out the task in a laboratory dedicated to such psycholog-
ical experiments. The complete experiment, including 
instructions and debriefing, was presented on a computer 
(Czienskowski 2005). The task was to catch as many fish as 
possible by the end of the experiment; catching the fish 
that occasionally appeared was easy but the skill came in 
judging when to switch from a depleted pond to a fresh 
pond. Payment was exclusively contingent on perfor-
mance but delivered only at the end. 

The main screen showed a cartoon character fishing at 
a pond, with the float on the end of the fishing line forming 
the mouse cursor (figured in the Supplementary Material). 
Fish popped to the surface stochastically at a rate of 
0.005  (number of fish in pond) s1. Thus the rate de-
creased as the subject depleted a pond’s stock (i.e. random, 
rather than systematic, search: Green 1987; Marschall et al. 
1989). Fish were somewhat cryptic and remained visible for 
only 2 s, so subjects had to remain attentive to catch fish, 
by clicking on them with the mouse. If a fish was caught, 
it moved to the bucket (an animation lasting 2 s). During 
this transfer no further fish would appear and the mouse 
was inactivated (so effectively there is a handling time of 
2 s plus the 1 s typically taken to click on a fish). Each cap-
ture also added a fish icon to a panel which thus displayed 
the number of fish caught at the current pond. Subjects had 
to rely on their own perception of time (watches and tele-
phones were not allowed). 

Subjects could switch ponds at any time by clicking on 
a prominent labelled panel. This would cause the angler to 
walk off screen, followed by a delay in which a bouncing-
ball animation with a ‘Please wait!’ sign was shown. Then 
a new pond appeared and the angler walked up to it and 
stuck out the fishing rod. To encourage the perception 
that it was a fresh pond, at each switch we rotated the 
pond border and placed three tussocks of vegetation 
randomly around it. 

We used a between-subjects experimental design with 
subjects randomly assigned in equal numbers to four 
environments. Environments differed only in the distribu-
tion of fish across ponds or, in one case, in the travel time 
between ponds. The mean of each distribution was 9.7 fish. 
gies 

up-time rule Fixed-T rule 

Relative 

performance 

Optimal 

threshold (s) 

Relative 

performance 

0.88 93 0.95 
0.96 93 1.00 
0.97 93 0.90 
0.97 74 0.89 

r a fixed giving-up time without a capture or after a fixed time in the 
lated by simulation (5  106 patches) to an accuracy of 0.1 s; their 
under the optimal policy. 



Table 2. Robustness of optimal and two constrained-optimal strategies 

Environment to 

which adapted 

Environment in 

which assessed 

Performance relative to maximum 

Optimal Giving-up-time Fixed-time 

Even Aggregated v¼25 s 0.41 0.97 0.90 
Aggregated v¼25 s Even 0.85 0.87 0.95 

Aggregated v¼15 s Aggregated v¼25 s 0.99 0.96 0.88 
Aggregated v¼25 s Aggregated v¼15 s 0.99 0.96 0.89 

Strategy parameters were adapted to one environment and performance was assessed in another. Performances are expressed as a fraction of 
the long-term reward rate in the new environment under the policy optimal in it. Each value derives from simulations involving 5  106 

patches. 
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One distribution was almost even (9 or 10 fish per pond), in 
another environment fish were distributed randomly over 
ponds (i.e. Poisson) and in the two other environments the 
distribution was aggregated following a negative-binomial 
distribution (variance 4.4 times that for the Poisson distri-
bution, thus more very rich and very poor ponds, but still 
unimodal). In one of the aggregated environments the 
travel time v between ponds (including 2-s animations of 
the angler moving off and on screen) was 15 s, whereas in 
the other three environments v ¼ 25 s. Qualities of succes-
sive ponds were uncorrelated (cf. Klaasen et al. 2007). 

Subjects played this game in a continuous session which 
terminated at the first switch after 45 min. This was preceded 
by a 4-min practice session of identical format except that we 
informed subjects that it was to allow familiarization with 
the task, that it was unpaid, so they could feel free to experi-
ment, and that they should try out switching ponds. 

Before this practice session, subjects had worked through 
a series of screens explaining the layout of the main 
experimental screen, how to catch fish, how to switch ponds 
and the monetary rewards (0.20 V per fish). The instructions 
also emphasized two structural aspects of the task. The first 
concerned the rate of appearance of fish within a pond. 
Subjects were told that this rate depended only on the 
number of fish currently in the pond but that the times of 
appearance were stochastic; only one fish would appear at 
a time. They were further told that the initial number of fish 
in each pond could vary and that each capture decreased the 
number left accordingly (no replenishment). 

The second structural aspect concerned switching ponds. 
Subjects were told that the number of new ponds was 
limitless but they could not return to ponds visited pre-
viously. Their one key task, in addition to catching fish, was 
to decide when to switch ponds. The only clues about 
strategy were in the following text (translated from the 
German). ‘Because your final payout depends on the total 
number of fish caught, you will achieve the best result 
(¼ higher payout) if you avoid two extreme strategies: stay-
ing too long at each pond, or switching too soon. For in-
stance, switching too soon does not lead to a high 
performance because of the time delays that follow clicking 
the switch-pond button.’ 

After the main experiment, an on-screen questionnaire 
asked subjects to describe any strategy that they had used to 
determine when to switch. The next screen asked about 
their use of the three cues suggested by theory: the number 
of fish captured at that pond, the total time spent there and 
the wait since the last capture. Use of each cue was scored 
on a four-point scale from ‘not at all’ to ‘very often’. 
RESULTS 
Testing for Inattention 
One concern was that 45 min of the experimental ses-
sion would generate boredom or tiredness. A potential 
sign of boredom was mouse clicking in the absence of 
fish. Four individuals made over 100 such clicks, but 
they behaved so only in a minority of ponds and were 
not particularly poor performers. The habit did not consis-
tently increase with time. 

Inaccurate clicks or slow reactions might also indicate 
inattention. One subject failed to catch 16% of fish that 
appeared, but the median was under 3%. Such failures 
were associated mostly with not making any click, and in 
about half of these cases the cursor was not near the fish, 
so it was probably not spotted. These latter instances 
occurred a median of only once per subject (1.2% of fish 
encountered), although three subjects did not react to four 
or five fish. The median proportion of fish that a subject 
missed despite a click close by was 1%, and it was always 
under 6%. The proportion of fish missed, the proportion 
of fish leading to a close-miss click, and reaction times all 
tended to fall during the course of the experimental 
session, but most improvement was in the first 15 min, ex-
cluded anyway from most analyses. There was no increase 
in the rate at which fish were apparently overlooked. 

In summary, there is no evidence of a loss of attention 
over the course of the experiment. If missing the fish was 
very common, the optimal policy would change quanti-
tatively for two reasons: a lower rate of capture and the 
forager gaining extra information about the number of 
fish remaining from having missed one. But because 
misses are so rare and because ponds are usually left 
with several fish remaining, behaviour should be scarcely 
affected. Subsequent analyses ignored misses. 
Initial Analyses 
In the experimental session a subject encountered 
a median of 73 fish (range 34e118) from a median of 14 
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ponds (range 6e31). The median catch at a pond was four 
fish, with a median residence time of 163 s. The longest 
residence time was 784 s, resulting in 35 fish caught, the 
biggest catch from a single pond. Except for a couple of 
outliers at the start, the shortest residence time was 26 s. 

One analysis often considered in the literature is 
whether more time is spent in a richer patch than in 
a poorer patch, indicating that foraging success affects the 
switching decision. This is adaptive in an aggregated 
environment, but the optimal policy in the Poisson 
environment is to spend a fixed time (excluding handling 
times) and the optimal policy in the near-even environ-
ment tends to leave richer ponds earlier. We indeed found 
a positive correlation in the majority of subjects facing 
aggregated environments, but the number of nonpositive 
correlations is significantly more than that expected un-
der the optimal policy (Table 3). In the near-even and Pois-
son environments the frequencies of positive correlations 
are within the wide ranges expected. 

Another recommended analysis tests whether, in envi-
ronments more aggregated than Poisson, the number of 
items left after switching is higher if more time has been 
spent at the patch (e.g. Olsson & Holmgren 1998; Olsson 
& Brown 2006). This is adaptive because the longer time 
spent, the better the estimate of current prey density, 
and thus the threshold (minimum T ) for remaining can 
be set higher without increasing the risk of leaving 
a good patch too early. Most subjects failed to show the 
expected positive correlation, although in the aggregated 
environment with v ¼ 25 s the number is within the 
95% confidence bounds generated by simulating the opti-
mal policy (Table 3). Really the predicted effect is too sub-
tle to detect readily here. In the even and Poisson 
environments, roughly zero correlation is predicted under 
the optimal policy, but observed correlations are almost all 
negative: subjects spent longer times if they had caught 
more fish, thus depleting such ponds to lower levels. 

To elucidate individual policies, we plotted each sub-
ject’s trajectories in N vs T space to compare against the 
Table 3. Number of subjects (of 25 in each environment) showing 
a positive correlation between time foraging at a pond and (1) initial 
number of fish in pond or (2) number of fish left after switching 

Environment 

TS vs initial 

number of fish 

TS vs number 

of fish left 

Observed Optimal Observed Optimal 

Even 14 5e14 0 6e15 
Poisson 16 7e18 1 7e18 
Aggregated v¼25 s 18 22e25 11 9e18 
Aggregated v¼15 s 20 22e25 8 12e20 

Time spent at a pond TS here excludes handling times. The ranges 
labelled Optimal are the 95% confidence limits based on 1000 sim-
ulations following the optimal policy given the observed number of 
ponds visited by each subject and the observed number of fish in 
each pond (but with new intercapture intervals randomly generated 
according to the specified N-dependent rate). The fixed-T rule opti-
mal in a Poisson environment implies correlations of 0, which are 
allocated randomly as positive or negative. Analyses omit ponds 
visited in the first 15 min. 
optimality predictions in Fig. 1a, b: Fig. 2a shows a random 
selection of subjects. The predictions hold to the extent 
that the switch points often lie roughly on a straight 
line. However, much intersubject variability is apparent 
in the slope and position of such lines. 

Figure 2b plots the same histories in I vs T space, where I 
is the interval without a capture (or from arrival at the 
pond, if this is later). A simple giving-up-time rule would 
place all switches along a horizontal line, which was not 
crossed earlier. The data are poorly characterized by either 
prediction. 

Also, in all environments the distribution of giving-up 
times is strongly bimodal with peaks either side of 4 s 
(Fig. 3): the proportion of switches within 4 s of a capture 
was 0.20 and 44 subjects showed at least one such switch 
(these values ignore the first 15 min). However, in only 12 
subjects were the majority of switches like this, and in 
only one subject were all switches so: this subject was in 
the even environment where such behaviour is predicted, 
but he did not switch after a constant number of captures. 
Our intuition was that a long period without a capture 
might make subjects promise themselves to switch di-
rectly after the next capture. Indeed, switches within 4 s 
of a capture were strongly associated with a long fruitless 
wait beforehand (the median interval preceding a <4-s 
switch was 45 s, compared with 21 s for other switches). 
We consider alternative explanations in the Discussion. 

Regardless of whether we include giving-up times under 
4 s, in the aggregated environments giving-up times are 
negatively associated with initial pond quality (P < 0.0001; 
based on regression including subject as a random factor, 
with the first 15 min excluded). In the Poisson environment 
the relationship persists but is significant only when includ-
ing giving-up times under 4 s. The negative relationship 
agrees with the finding of Roche (1996) in the black-capped 
chickadee, Parus atricapillus; he shows that the result is com-
patible with a variety of patch-leaving rules. However, the 
optimal policy generates such a relationship only in our Pois-
son environment and not in the aggregated environments 
where we observed it. 

To conclude, although I might be used as one cue in 
a more complex method of deciding when to switch (as 
later analyses confirm), Fig. 2 suggests that it makes sense 
to start our analysis by assuming a switching line in N vs T 
space. Even if N and T are not the cues used to determine 
switching, it is useful to describe the resultant behaviour 
in terms of the values of N and T at which switching oc-
curs (NS and TS), because these determine the payoff. We 
have assumed that this switching line is straight, based 
on inspection of Fig. 2a and because this is at least 
a good approximation to the optimal policies in Fig. 1a. 
To fit a straight line we regressed TS on NS, thus assuming 
that all error is in the perception of T (subjects had no ac-
cess to clocks but could see the stack of caught fish). The 
TS vs NS slope may be readily interpreted as how long 
each capture extends residence time. Its reciprocal gives 
the NS vs TS slope of the lines shown in Figs 1b and 2a. 
As expected from Weber’s law applied to time estimation 
(e.g. Brunner et al. 1992), residuals increased proportional 
to the fitted values of TS; accordingly our regression anal-
ysis specified this variance structure. This, as well as 
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Figure 2. (a) Trajectories in NeT space of 12 randomly chosen subjects from three of the environments. Each staircase maps foraging success at 

one pond: vertical jumps correspond to prey captures and dots mark the switches. Red lines show the switching line under the policy optimal in 

each environment (Fig. 1). (b) Duration of intervals without a fish appearing plotted against time at the pond for the same 12 subjects. Crosses 
mark intervals ending in a capture, dots mark those ending in a switch. Red lines show the giving-up times that maximize performance. Note 

the variation in scales between subjects; all scales are linear. 
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treating subject as a random factor in a nested design, is 
possible using the lme function of the statistical program 
R; it fits using maximum likelihood or restricted maxi-
mum likelihood (Pinheiro & Bates 2000). 

To describe the position of the switching line, rather 
than its slope, we considered the average residence time. 
Because of Weber’s law, we log-transformed values of TS 

before analysis but report backtransformed values (i.e. 
our ‘average TS’ is the geometric mean). 
Change in Decision Rule through the 
Experimental Session 
Subjects will require experience with an environment to 
adapt their patch-leaving rules. A mean of only 2.7 ponds 
were visited during the 4-min practice session, so we 
expect any adjustment to continue during the experimen-
tal session. The direction of any adjustment provides a test 
of whether subjects adapt to different environments, but 
we also wanted to facilitate other comparisons between 
environments by selecting a period when strategies had 
stabilized. 

Our approach was to fit straight-line relationships 
between TS and NS, as outlined above. Each subject was 
allowed a different slope and intercept but these were 
each further affected by an additional adjustment factor, 
common to all subjects from each environment, that 
coded for arrival time at each pond (since the start of 
the experimental session). This factor was categorical 
with a level for each of six successive 450-s intervals. 

Figure 4a shows how the adjustment factor alters the av-
erage TS vs NS slope over the course of the experimental 
session. Surprisingly, the pattern is of much initial varia-
tion between environments but convergence by the sec-
ond half of the experiment. If we consider arrival time 
as a continuous rather than a categorical variable (i.e. fit-
ting straight-line relationships to Fig. 4a), two environ-
ments (Poisson and aggregated v ¼ 25 s) show significant 
changes in the TS vs NS slope through the course of the ex-
periment (P ¼ 0.001, 0.017). The variation between the 
four environments in the direction and extent of these 
changes is highly significant (P < 0.0001). 

Turning to the position of the switching line along the TS 

axis, no environment shows a significant change in the av-
erage time at a pond during the course of the experimental 
session (P > 0.18), but incorporating all environments into 
one ANOVA does indicate significant variation between 
times (F5,1276 ¼ 3.75, P ¼ 0.002). Figure 4b suggests that 
this involves an initial increase and then a possible decrease. 
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Figure 4. (a) Variation in slope of switching line (increment in resi-

dence time with each capture) over the course of the experimental 

session. Values derive from linear mixed-effect regressions (lme 
from R) from the coefficients describing the interaction of a six-level 

factor describing arrival time at a pond (pooling over 450-s intervals) 

with NS; the arrival-time factor also affects the intercept and the 

model includes subject as a random factor affecting slope and inter-
cept. (b) Variation in the geometric mean of TS during the experi-

mental session. The values derive from ANOVAs of log(TS), in 

which the arrival-time factor is crossed with a random subject factor. 
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Dall (1995, chapter 5) rejected the hypothesis of adapta-
tion to prey dispersion over patches solely on the basis of 
failing to find an improvement in performance (rewards 
per probe) over successive experimental sessions. In our ex-
periment, there was also no general improvement in perfor-
mance (regressing NS/TS against arrival time at each pond: 
F1,1280 ¼ 0.37, P ¼ 0.5) although there was significant tem-
poral variation caused by performance tending to fall and 
then rise, mirroring the pattern for average TS. 

So as to remove the period of most pronounced strategy 
experimentation and adjustment, subsequent analyses 
ignore pond visits starting within 15 min of the start; this 
leaves a median of eight pond visits for each subject. An ex-
ception was made for one subject who would otherwise 
have been represented by only two ponds; we included 
a pond at which she arrived after 860 s. 
Each environment was analysed separately. The error bars (for one 
representative environment) show the standard errors appropriate 

to compare between times within that environment. 
Terminal Relationship between TS and NS 
Slope of switching line 
The environments do not differ significantly in the slope 

of the TS vs NS regression lines (P ¼ 0.55, based on 
NS  environment term, with subject as a random factor 
affecting intercept and slope). The common slope is such 
that each capture increases residence time by a mean of 
19 s (95% confidence interval ¼ 18e20 s). If this value 
were just 5 s less in the even and Poisson environments 
than in the aggregated environments, the chance of find-
ing significant (P < 0.05) interenvironment variation 
would be 95%, so statistical power is sufficient to detect dif-
ferences in slope much smaller than predicted. 

Figure 5a shows the distribution of the TS vs NS regression 
slopes for individual subjects. They are strikingly consistent 
in being positive and mostly incompatible with optimal 
policies in Poisson as well as even environments. Instead, 
slopes in all environments group around that predicted as 
optimal for the particular negative-binomial dispersion 
that we specified for our aggregated environments. 
We should consider alternative explanations for these 
positive slopes. If subjects spend random amounts of time 
at a pond regardless of capture success (cf. Adler & Kotar 
1999), the longer time spent the more fish will turn up. 
To make predictions from this null model, we simulated 
how many fish would be caught in the observed set of res-
idence times of each subject in ponds of random quality 
(selected according to their frequency in the environment 
faced). The resultant data were analysed by a regression 
procedure identical to that of the real data, and we re-
peated the simulations 20 times. In three of four environ-
ments the observed TS vs NS slopes differ significantly 
from these simulations (Table 4; P < 0.012, t tests). 

Another explanation for the positive regression slopes is 
that subjects are using a giving-up-time rule (Fig. 1c). Such 
a rule optimized to each environment generates slopes of 
13.9e18.0 s/capture, which are less than those observed 
(Table 4). However, the observed slopes can be generated 
by use of longer giving-up times than optimal (the rule 
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would have to be probabilistic to be compatible with the 
variation in Fig. 2b). 
Position of switching line 
Figure 5b shows the distribution of average residence 

time (TS) for individual subjects. For nearly all subjects 
(96/100) average TS is longer than optimal. For instance 
Table 4. Testing predictions of optimal and other rules 

TS vs NS slope (s/fish) 

Optimal 

Optimal if 

GUT rule 

Null 

model Obse

Even 211 18.0 22.7 23
Poisson 3.0 17.3 13.9 19
Aggregated v¼25 s 17.2 15.2 10.0 19
Aggregated v¼15 s 16.7 13.9 12.2 20

Slopes are fitted using linear mixed-effect regressions of TS against NS. Fo
slope and intercept; the slopes given are based on separate analyses of eac
time. The null model assumes that choice of TS is independent of N and p
ponds of random qualities. Values for average TS are geometric means 
means); the optimal values were calculated by simulation. Relative perfo
over subjects) divided by that obtainable under the optimal strategy. An
in the even environment the average of subjects’ average 
TS is 168 s compared with 100 s under the optimal policy; 
in all environments these differences are significant (t 
tests: all P < 0.0001). The observed values are also much 
higher than those predicted by an optimal giving-up-
time rule (Table 4) or by a rule optimal under the con-
straint that captures delay switching to the extent implied 
by the observed TS vs NS slopes. 
Average TS (s) 

Relative 

performance rved Optimal 

Optimal if 

GUT rule Observed 

.3 100 84 168 0.84 

.0 103 83 183 0.86 

.6 65 72 207 0.73 

.1 47 58 170 0.72 

r the observed data, subject is considered a random factor affecting 
h environment (a joint analysis yields similar results). GUT: giving-up-
redictions are based on simulations applying observed values of TS to 
(and for observations are the geometric mean of subject geometric 
rmance is the observed mean rate of gain (NS and TS each pooled 
alyses omit ponds visited in the first 15 min. 
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Environments do not differ significantly in average TS 

(ANOVA: F3,96 ¼ 1.13, P ¼ 0.3). However, in the aggre-
gated environments average TS under the optimal policy 
is smaller (Table 4). Consequently, performance relative 
to the maximum achievable is lowest in the aggregated 
environments (Table 4), despite the positive TS vs NS 

slopes observed being adaptive in that environment. 
Comparing the two aggregated environments, the optimal 
policy is to switch on average 18 s earlier when the travel 
time is 15 s between when it is 25 s. The observed differ-
ence in average TS between the two environments is of 
the right order (37 s), but considerable variation between 
subjects prevents it differing significantly from 0. 

Table 4 shows observed performances relative to those 
of the optimal strategies. Note that subjects perform worse 
than an appropriate giving-up-time or fixed-T rule could 
achieve, often considerably so (Table 1). 
An Alternative Model: Cox Proportional 
Hazards Regression 
We earlier relied on visual inspection of Fig. 2 to choose 
an analysis in which switching depended on number of 
captures (N ) rather than on interval without a capture 
(I ). A more formal comparison is desirable. The analysis 
that has become standard is Cox proportional hazards re-
gression (e.g. Haccou et al. 1991; Driessen & Bernstein 
1999; Tenhumberg et al. 2001). This assumes that switch-
ing is a stochastic process but the rate is affected by vari-
ous factors. Much of the error in the earlier regression 
analysis is subsumed into the fitted function h0 describing 
the rate of switching in each time unit averaged over all 
patches. We take this baseline hazard h0 to be a function 
of time spent on the pond (some studies instead take I; 
such an analysis yielded results compatible with those re-
ported below). Other factors such as N and I can be added 
to the model and each has a consistent multiplicative ef-
fect on the switching tendency at all times: for instance, 

hðT ;N; IÞ ¼ h0ðTÞui expðbN N þ bI IÞ: 

Here h is the hazard function (the probability of switching 
in one time unit if not switched at the start of the time 
unit). The fitted coefficients bN and bI reveal the effects of 
N and I on the baseline hazard rate. The coefficient ui is 
a ‘frailty’ factor describing the random variation between 
subjects in their tendency to leave (Therneau et al. 2003); 
ui are assumed to be sampled from a gamma distribution. 
Our analysis used the ‘survival’ package of the statistical 
program R (Therneau 1999). Because covariates such as I 
and N change through the course of a pond visit, a separate 
line of data was entered to describe state at each second. 
When a fish appeared but escaped, we excluded the period 
from the appearance until after the next capture or switch. 
Statistical significance was assessed by analysis of deviance. 

Although this statistical model might well provide 
a reasonable description of patch-leaving behaviour, it 
cannot exactly fit either a simple N-dependent rule exem-
plified by the optimal strategy or a giving-up-time rule. 
These rules specify that the threshold value of T, applied 
deterministically, shifts depending on N or I. Cox 
regression does not allow factors to shift a threshold in 
time (unless the factor specifies strata, but then no statis-
tical comparison between levels is possible), but only to 
multiply the probability of switching by the same factor 
at all times. Moreover, when we put data simulated from 
an optimal rule (with added noise) into a Cox regression, 
I often was significant even though in the model generat-
ing the data it had no influence. But more reassuringly, 
when we entered both N and I together into that analysis, 
only N came out as significant. And the converse was true 
when analysing simulated data generated by a noisy 
giving-up-time rule. 

We initially entered the following predictor variables 
into the Cox regression analysis: N captures from the cur-
rent pond, I interval without a capture, I1 interval with-
out a capture leading up to the previous capture, I2 

intervals without a capture leading up to the second-last 
capture (only intervals in the current pond count) and ta 

arrival time at the pond since the start of the experimental 
session. We did not include a factor describing true patch 
quality, because subjects could only estimate this and our 
aim was to discover what cues they used. Nor did we 
include total fish caught on all ponds or number of ponds 
visited, because of the risk that the direction of causation 
could be reversed (e.g. assuming some autocorrelation in 
strategy used in successive ponds, the strategy will have af-
fected the number of ponds visited, which confounds any 
effect of number of ponds visited on the strategy). For the 
same reason we restricted measures of time and success on 
the previous pond to a supplementary analysis reported 
below. We performed a stepwise procedure to remove non-
significant variables (P < 0.05), at intermediate stages 
manually checking for the linearity of effects with plots 
such as those in Fig. 6 and where necessary transforming. 
We also tried nonlinear combinations of the variables 
where suggested by these plots or by a priori mechanistic 
or functional considerations. This explorative flavour in-
creases the risk of type I errors, but all variables in the final 
model are highly significant (Table 5). Data from all envi-
ronments were entered into a single analysis, and only 
after selecting a set of significant predictors did we test for 
differences between environments. 

The fit improved dramatically if we distinguished cases 
of switching within 4 s of a capture (see Fig. 3). We speci-
fied this in the Cox regression by splitting variables such 
as I1 into two variables Iþ1 and I1, which were both en-
tered into the regression: for a 4-s period following each 
capture Iþ1 ¼ 0 and I1 ¼ I1, whereas otherwise 
Iþ1 ¼ I1 and I1 ¼ 0. The same technique can cope with 
the situation before any captures, when I1 is undefined, 
and before two captures, when I2 is undefined (e.g. 
when N ¼ 0, set I1 ¼ 0 and a new factor X0 ¼ 1; otherwise 
X0 ¼ 0; both I1 and X0 are included in the Cox regres-
sion; the coefficient of X0 is R0 in Table 5). We now ex-
plain the results summarized in Table 5 and Fig. 6. 

The baseline hazard function indicates that time spent 
on the patch tends to increase the tendency to leave 
(Fig. 6a). Although the effect is quite weak (a factor of only 
about four) and is unstable above 400 s, a separate Cox re-
gression with the baseline hazard a function of I con-
firmed that this effect of T was significant (P < 0.0001). 
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Figure 6. Cox proportional hazards regression. (a) Smoothed version of the baseline hazard function, derived by fitting a 12-parameter spline 

to the survival function and differentiating. Note that there are relatively few observations above 400 s residence time. (b)e(f) Influence of 

various other factors on leaving tendency (see also Table 5). In each case we reran the Cox regression with one continuous variable replaced 
by a counterpart in which it was split into a series of categorical levels; the exponent of the fitted coefficients of each level are plotted on the 

vertical axes and indicate by what factor this range of values increases leaving tendency over the baseline. Horizontal axes are scaled according 

to the transformation used in the model in Table 5. In (e) we did not allow the differences between environments present in the full model 
(Table 5). In (f) the dot on the vertical axis covers cases where the previous pond was left without a capture (NS ¼ 0). The model assumes that 

a different set of factors influences leaving tendency within 4 s of the last capture compared to that after. 

HUTCHINSON ET AL.: PATCH LEAVING IN HUMANS 1341 
When more than 4 s has passed since a capture, the 
probability of leaving increases with the interval since 
the last capture (I ). A square-root transformation makes 
the relationship more linear (Fig. 6b). The interval preced-
ing the last capture (I1) has an effect similar to that of I 
(Fig. 6c). In addition there is an effect of the ratio between 
these two intervals (R ¼ I/I1), so that a decline in capture 
rate stimulates switching; the effect is nonlinear, with no 
incremental effect when the current interval is less than 
the preceding interval (Fig. 6d). However, the form of 
this relationship depends considerably on the transforma-
tions applied to I and I1, so it is safer to conclude merely 
that I and I1 both have effects and interact in some 
nonadditive way. The interval before the second-last cap-
ture (I2) was not significant. 

When less than 4 s has passed since a capture, the 
interval before that capture (I1) matters most (Fig. 6e). 
This is compatible with long intervals engendering 
a promise to oneself to leave straight after the next cap-
ture. The interval preceding this (I2) also has a significant 
effect. 

The significant effect of time of arrival in the patch (ta) 
implies that the policy was still adjusting even after the 
first 15 min. This was in the adaptive direction of shorten-
ing residence times: switching rate is 1.6 times higher in 
a pond entered after 45 min than that after 15 min. 



Table 5. Cox regression model describing how various factors affect tendency to switch ponds 

Variable Transformation Coefficient P value 

Factors operating 4 s after a capture (otherwise values set to 0) 
I¼interval since last capture OI 0.266 <0.0001 
I1¼interval preceding last capture OI1 0.289 <0.0001 

R0¼2.38 replaces when N¼0 R¼I/I1: Rþ¼1 if  R1 else Rþ¼R ln[Rþ] 0.615 <0.0001 

Factors operating <4 s after a capture (otherwise values set to 0) 
I1¼interval preceding last capture OI1 0.500e0.633 <0.0001 
I2¼interval preceding I1 OI2 0.169 <0.0001 J1¼4.04 replaces when N¼1 

Additional factors 
ta¼arrival time at pond ta 2.60104 <0.0001 
Subject (random factor) <0.0001 

Positive coefficients indicate an increased tendency to switch: the exponent of the sum of the terms in the table is assumed to have a multi-
plicative effect on the baseline probability of switching, which is a fitted function of time at the pond (Fig. 6a). A range of coefficients is given 
for I1 when I < 4 s because they differ (P < 0.0001) across environments. Units are seconds. The analysis omits ponds visited in the first 
15 min. 

Table 6. Subject ratings of how often they used a cue in deciding 
when to switch 

Cue 

Response 

Not at all Rarely Often Very often 

T 4 29 47 20 
N 5 27 39 29 
I 1 8 33 58 

For each cue the numbers of subjects (of 100) choosing each 
response are given. 
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Adaptive policy adjustment was further tested by in-
cluding a factor describing rate of capture at the previous 
pond (captures/time spent). We expect high success rates to 
suggest a high return rate in the environment in general 
and thus to increase the tendency to leave the next patch. 
The relationship was just significant (P ¼ 0.043) but would 
be more so without cases when the previous patch was left 
without a capture (NS/TS ¼ 0 in  Fig. 6f). A subject willing to 
leave one patch without a capture is liable to retain a similar 
strategy and leave the next patch relatively early also (more 
liable than at another time). So the proposed effect of suc-
cess in one patch on the strategy used in the next is con-
founded by autocorrelation in the strategies applied. 

We tested for a difference between environments by 
entering a four-level environment factor. Overall tendency 
to leave did not differ significantly between environments 
(mirroring the nonsignificant differences in TS reported 
above) nor did the interactions with the main variables 
listed in Table 5, with the exception of the effect of I1 

on switching within 4 s of a capture (P < 0.0001). In the 
two aggregated environments, long periods without a cap-
ture increased the chances of switching directly after the 
next capture less than that in the more dispersed environ-
ments; for an intercapture interval of 45 s, the difference 
between environments in the leaving tendency immedi-
ately after the capture could be a factor of 2.5. 

Importantly, there was no significant effect of the 
number of captures (N ), whether we consider the situations 
within and after 4 s of a capture separately or combined 
(P ¼ 0.3, 0.9, 0.6, respectively). When we include both N 
and an interaction of N with environment, the significance 
becomes barely marginal (P ¼ 0.1); the coefficients suggest 
that any effect of N might exist only in the Poisson environ-
ment, where the least effect was predicted. 

We checked for the validity of the proportional hazards 
model by examining whether the Schoenfeld residuals 
showed a relationship with T (Therneau 1999). Unfortu-
nately there were significant effects for I and I1, both de-
clining in influence at longer residence times rather than 
having a consistent effect. However, the decline appeared 
noticeable only with T > 400 s, when 95% of ponds have 
already been left; and using other transformations of I and 
I1 can remove the nonproportionality (at the expense of 
a poorer fit). We therefore consider the model in Table 5 
a fair indication of how cues were used. 
Self-reports 
Eighty of the 100 subjects wrote about their strategies. 
One of us and one assistant independently scored whether 
each description mentioned any of three cues: fish caught 
from the current pond (N ), time at the current pond (T ) 
or interval without a capture (I ). Descriptions were scored 
in random order, with scorers blind to the environment 
faced. The scorers disagreed whether the subjects had 
mentioned use of N in four of the 80 subjects, use of T 
in 16 subjects and use of I in 14 subjects. Nevertheless 
the pattern is clear: for 20 of 80 subjects, at least one of 
the two scorers thought that the subject mentioned N as 
a cue, the value for T is 27, but for I it is a much higher 59 
(a proportion of 0.74). For each cue, we tested for a differ-
ence between environments in whether it was mentioned, 
pooling the two aggregated environments. There was only 
a marginally significant difference in mentions of T 
(P ¼ 0.04 without correcting for multiple comparisons): T 
was more often mentioned in the aggregated environments. 

Following this open-ended question, subjects explicitly 
rated how often they used each of the same three cues 
(Table 6). Each cue was rated by majorities of the subjects 
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as used ‘often’ or ‘very often’, but I was much the most of-
ten reported used ‘very often’. Of the 100 subjects, 49 
scored I as more often used than N compared with only 
16 scoring N as more often used than I. Also, 53 subjects 
scored I above T compared with 10 scoring T above I. Dif-
ferences between environments were not significant. 
DISCUSSION 
What Patch-leaving Rules do Humans Use? 
We fitted two models: the TS vs NS linear regression fit-
ted a model based on one family of simple deterministic 
rules (but allowing for imprecision in time estimation); 
the Cox proportional hazards regression fitted a model 
based on a probabilistic tendency to switch affected by 
time at the pond and other factors. Although the multipli-
cative weighting of probabilities is perhaps unrealistic as 
a model of cognition, Cox regression has an advantage 
in allowing statistical comparison of different cues. This 
established that recent intervals without captures are 
much better predictors of switching than number of cap-
tures, so the TS vs NS regression is also probably invalid 
as a direct description of the cognitive mechanism. But 
this linear regression remains a useful description of be-
haviour and allows direct comparison with the optimal 
policy. 

The between-subject variation in the slope of the 
switching line swamps the between-environment varia-
tion (Fig. 5), although the former might be reduced by ob-
serving subjects for longer times. Nevertheless it is striking 
how consistently subjects generated a positive TS vs NS 

slope (92 of 100). What can we conclude about subjects’ 
decision rules? Despite the simplicity of the fixed-N rule 
and that it was effectively optimal in the even environ-
ment, clearly nobody used it. It is harder to rule out indi-
viduals using a fixed-T rule because there will be some 
error in estimating time, and residence times that by 
chance are longer will tend to be associated with more 
captures. However, we showed by simulation that this ex-
planation is insufficient to explain the mean slopes in 
three of the environments. Additional evidence comes 
from considering the within-subject variation in residence 
time over the last two thirds of the experimental session. 
In all but seven subjects the coefficient of variation is 
above 0.2 (minimum ¼ 0.10, median ¼ 0.37), whereas, 
even without consciously counting, humans can replicate 
a duration with coefficients of about 0.15 (reviewed by 
Wearden 1991). 

The positive correlation between residence time (TS) 
and number of captures (NS) could potentially be gener-
ated by either an N-dependent T threshold or a giving-
up-time (i.e. I-dependent) rule (Fig. 1). Both sets of cues 
can estimate the recent rate of capture, so both may lead 
to similar decisions. There are many other ways to com-
bine N, T, I and the preceding intercapture intervals 
(Roche et al. 1998); for instance the giving-up time could 
be modified by N and/or T (e.g. Kamil et al. 1988; Wild-
haber et al. 1994; Nelson & Roitberg 1995) or the incre-
mental effect of a capture on tendency to stay could 
depend on I1 (cf. Burger et al. 2006). Several studies 
that used Cox regression (like ours with h0 a function of 
T ) concluded that there was an effect of N on leaving ten-
dency without testing whether the concomitant increase 
in average I could be responsible instead (e.g. Wajnberg 
et al. 2000, 2003; van Baaren et al. 2005). Our Cox regres-
sions implied that I and T but not N had influences. 

The self-reports also implied that I was more often 
a component of subjects’ strategies than N. This is despite 
N appearing on screen, whereas subjects had to rely on 
their own perception of time. However, self-reports of 
decision-making processes are often an unreliable guide 
(Nisbett & Wilson 1977), including those in progressive-
ratio experiments (Wanchisen et al. 1992; Hackenberg & 
Axtell 1993). 

The Cox regression suggested that subjects combine the 
information from the current interval without a capture 
with the previous such interval. The average of two 
intervals potentially provides a less noisy estimate of 
current capture rate than reliance on just one interval. 
However, simulations of such a rule (not presented here) 
showed an advantage over a simple giving-up-time rule 
only in the aggregated environment, in which the simple 
version anyway performed close to maximal. There was no 
indication that still earlier intercapture intervals affected 
decisions. Haccou et al. (1991), studying parasitoids, 
found shorter giving-up times when recent intervals 
were longer, suggesting similar averaging. Recent intercap-
ture intervals also seemed important in determining when 
pigeons, Columba livia, switched (Roche et al. 1996). Reli-
ance on mainly the most recent interval to predict the 
next interval is a widespread phenomenon in contexts be-
yond patch switching (Shettleworth & Plowright 1992). 

The ratio of the current interval without a capture to the 
preceding interval was also a highly significant predictor 
in the Cox regression. Let us suppose this to be a real 
phenomenon, although it could emerge simply because of 
nonadditivity in the parallel, positive effects of I and I1. If  
the current interval was less than the last interval, the ra-
tio had no effect, perhaps because such a pattern is ex-
pected and thus uninformative. A similar proportionality 
to the preceding interval describes when pigeons start to 
peck in expectation of a reward (Higa et al. 1991) and in-
deed the ratio of I to I1, or to an average of earlier inter-
capture intervals, has been implicated in their switching 
rules (Roche et al. 1998). Similarly, starlings, Sturnus vulga-
ris, stop pecking for a reward after a constant multiple of 
the wait that they had been trained to expect (Kacelnik 
& Brunner 2002). The ratio cue seems a good way to detect 
a sudden deterioration in the environment, for instance if 
all prey hide. However, if the ratio cue were used alone, 
a luckily brief intercapture interval would be likely to trig-
ger premature leaving before another capture occurred. 

In summary, the Cox regression found that several cues 
affect the tendency to leave and that there is some 
interaction between them. This apparently does not 
support the hypothesis of a simple deterministic rule of 
thumb (Hutchinson & Gigerenzer 2005), which had been 
suggested by the simplicity of the optimal strategy if the 
environment is known and by the robustness of certain 
simple rules under uncertainty about the environment. 
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But it remains possible that different individuals use dif-
ferent simple rules and that the complexity suggested by 
the Cox regression comes from amalgamating data from 
different individuals. 

Leaving directly after a capture 
The Cox regression indicates that a capture increases the 

tendency to switch directly afterwards, which explains the 
bimodality of giving-up times (Fig. 3). In isolation this 
would lead to shorter TS when NS is large, and thus 
a switching line with negative slope, but the effect is over-
whelmed by the influences of I and I1. We proposed that 
a long fruitless wait prompted subjects to promise them-
selves to leave after the next capture. The motivation to 
wait until then rather than switch immediately would 
come from an illogical reluctance to ‘waste’ time already 
‘invested’ in waiting. This would be a form of the Con-
corde fallacy (Dawkins 1976, page 162). Arkes & Ayton 
(1999) argue that this fallacy is widespread in humans 
but rare or absent in other animals because humans for-
mulate abstract rules like ‘don’t waste’ and then overgen-
eralize them to inappropriate situations. Indeed we know 
of no similar finding from patch leaving in other species: 
other cases of leaving straight after a capture are explicable 
as an adaptive response to a deterministic reward schedule 
(e.g. Ydenberg 1984) or to a dispersed distribution of items 
over patches (e.g. Redhead & Tyler 1988). In the latter ex-
ample, the rats’ tendency to switch directly after a capture 
increased over the course of the experiment, which sug-
gests exactly the sort of facultative adjustment of switch-
ing rule (in response to consistent patch qualities) that 
we were seeking. 

There are further alternative explanations for switching 
directly after a capture. (1) Perhaps a capture prompts 
subjects to consider whether to switch, whereas otherwise 
they were mostly concentrating on spotting fish or day-
dreaming. (2) Subjects may imagine themselves to be 
observed; a real angler commented that leaving after 
a fruitless interval looks to others like a misjudgement 
and thus may involve a loss of face as well as a feeling of 
dissatisfaction. (3) In many foraging situations the timing 
of captures within a patch exhibits some regularity of 
spacing, in which case leaving after a capture can be 
adaptive. This regularity might arise because items are 
physically spaced apart or because catching one item 
makes other prey hide for some period. 
Lack of Adjustment of Strategy between 
Environments 
Our main prediction was that different dispersions of 
fish among ponds would prompt strategies differing 
dramatically in how captures affected switching. In the 
even environment a capture should encourage switching, 
in the Poisson environment it should have no effect and 
in the aggregated environments it should discourage 
switching. In fact for nearly all subjects NS and TS were 
positively correlated, with no significant effect of environ-
ment. The Cox regression found a significant effect of en-
vironment only on the extent to which longer intervals 
triggered switching directly after a capture. Nor did the 
self-reports of cue use find convincing differences between 
environments. 

This insensitivity might reflect the difficulty of learning 
the dispersion or the appropriate strategy while trying to 
exploit patches efficiently. A model of learning environ-
mental quality has confirmed that stable estimates of 
variance in patch quality are obtainable rather later than 
accurate estimates of the mean (Rodrı́guez-Gironés &  Vá s-
quez 1997, although their learning procedure is subopti-
mal in several respects). Our intuition was that subjects 
might not be conscious of being in an even environment 
but that they should detect the unevenness of the aggre-
gated environment once they encounter a very poor 
patch. A later study using a modified version of the exper-
iment, in which subjects experienced an even and an ag-
gregated environment in sequence, has supported this 
intuition by asking subjects explicitly about their percep-
tions of the dispersions (A. Wilke & R. Mata, unpublished 
data). In the aggregated environment with a 25-s travel 
time, our intuition is compatible with the change of TS 

vs NS slope during the course of the experimental session: 
the slope started off appropriate to a less-aggregated envi-
ronment (but more aggregated than Poisson), and over 
the first 15 min it changed to one appropriate to the actual 
environment encountered (Fig. 4a). However, subjects ex-
periencing the Poisson environment exhibited the same 
direction of change, which here is the opposite of that 
predicted. 

One adaptive explanation for captures increasing the 
tendency to stay whatever the environment is that this 
policy is the best in an aggregated environment, that 
aggregated is the predominant pattern of dispersion in 
nature (e.g. Taylor et al. 1978) and thus that evolution has 
hardwired us to gamble on this pattern given the difficul-
ties of estimating dispersion (Rodrı́guez-Gironés & Vá s-
quez 1997). As a supporting argument, the costs of 
misjudging an even environment as aggregated are lower 
than vice versa (Table 2). Using I as a cue instead of N 
limits the inefficiency of the policy should it be the wrong 
bet. 

However, Rodrı́guez-Gironés &  Vá squez (1997) point 
out that many of the data claimed as evidence for aggre-
gated distributions comprise numbers per randomly 
placed quadrat rather than per patch and thus may reflect 
merely patchiness itself. Competition between prey, and 
often patch depletion by other predators, reduce variation 
in patch quality. Also, often in real life cues other than the 
timing of captures indicate patch quality reliably; what 
matters is the posterior distribution of patch qualities 
given the information from these cues, so that a decremen-
tal rule can then become optimal even in an aggregated 
environment (Shaltiel & Ayal 1998; Driessen & Bernstein 
1999). 
Position of the Switching Line 
and Performance 
Average residence time was considerably too long. Our 
prior intuition was the opposite, that subjects would 
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switch early to take a break from concentrating on the 
screen. An overwhelming majority of animal studies have 
also found a tendency to switch patch later than optimal 
(Nonacs 2001). One explanation is that optimality models 
do not take into account extra risks and uncertainties asso-
ciated with moving between patches (natural selection 
may have hardwired the animal to behave as if a travel 
risk always existed even if none exists in the laboratory). 
A similar explanation is that subjects expect the experi-
ment to finish soon and wish to avoid wasting the last pe-
riod waiting for the next patch (cf. Wajnberg et al. 2006). 
We modified our optimization program so that there was 
a constant risk of the experiment ending and the currency 
maximized was total fish collected, rather than rate of cap-
ture; for reasonable risks of interruption the effect on aver-
age TS was slight (cf. Newman 1991; Nonacs 2001), and 
fears of interruption would have to be unbelievably over-
blown for predicted TS to match observations (perceived 
half-lives between 14 and 36 s: cf. Stephens 2002). 

Another reason to stay longer than predicted might be 
to learn more about the environment (e.g. the form of the 
gain curves), which our optimality model unrealistically 
assumes are known (Oaten 1977). We expect this effect to 
be strongest early in the experimental session, although 
some effect may persist if subjects suspect that the envi-
ronment may change. The Cox regression found that 
the tendency to leave indeed increased even within the 
later part of the experimental session (similarly, average 
TS decreased over this period, although not significantly: 
P ¼ 0.060). But another explanation for this is subjects 
learning that shorter residence times increased perfor-
mance. In support of this explanation, leaving tendency 
increased more following a higher success rate on the pre-
vious pond. This makes sense: you should switch earlier if 
your estimation of the richness of other patches has 
increased (McNamara & Houston 1985). Other animals 
indeed adjust residence time adaptively according to 
experience on the previous patch and most recent travel 
times (e.g. Roitberg et al. 1992; Visser et al. 1992; Cuthill 
et al. 1994; Tentelier et al. 2006). 
A Different Type of Explanation: Minimizing 
Delay to Reinforcement 
One proposed explanation of nonoptimal behaviour in 
progressive-ratio experiments is that the animals are 
Table 7. Testing predictions supposing that expected time to the next c

Environment 

TS vs NS slope (s/fish) Avera

Minimizing 

delay Observed 

Minimizing

delay 

Even 247 23.3 181 
Poisson 3.0 19.0 188 
Aggregated v¼25 s 20.5 19.6 182 
Aggregated v¼15 s 20.0 20.1 133 

Technical details as in Table 4. The proportions shown in the last column
and the overall ratio (43:52) does not differ significantly from 1:1 (binom
concerned with a different currency: they short-sightedly 
seek to minimize delays to the next few rewards rather than 
maximize long-term reward rate (e.g. Mazur & Vaughan 
1987; Shull & Spear 1987). Cassini et al. (1990) went 
further, proposing minimization of the delay to the 
very next reward alone as a currency compatible with 
behaviour of guinea pigs, Cavia porcellus, in a patch-leaving 
experiment (although a follow-up study reverted to a 
rate-maximization model: Cassini et al. 1993). The dispro-
portionate importance of delay to the very next reward 
has long been established in other choice contexts and 
has been associated with impulsivity or lack of self control 
(Stephens & McLinn 2003). The delay-minimization crite-
rion predicts longer residence times, because much of the 
advantage of switching under a rate-maximization crite-
rion comes from the several short intercapture intervals 
after the first capture and not just from the shorter interval 
until that first capture (cf. the proof in Houston 1987 for 
deterministic schedules). 

We used dynamic programming to calculate the strategy 
minimizing delay to next reward in each of our four 
environments. For the switch option the expected delay is 
the travel time plus the expected time to a capture when 
arriving at a new pond of unknown quality. The average 
residence times (TS) predicted are now much closer to 
those observed (Table 7). Other signs of this good match 
are that, if we simulate these rules assuming the timing 
of captures experienced in each pond of the experiment, 
roughly half the ponds are left earlier and half later than 
actually observed (0.53:0.47), and the proportion of sub-
jects that left mostly earlier than predicted does not differ 
significantly from the proportion leaving mostly later 
(Table 7). 

Minimizing delay to reward still predicts TS vs NS slopes 
similar to those maximizing reward rate (cf. Tables 4 and 7). 
This is because both expected delay to reward and ex-
pected rate of reward covary closely with the Bayesian 
estimate of the number of fish remaining given N and 
T. Thus predicted slopes in the even and Poisson envi-
ronments remain in conflict with the observations. Our 
earlier explanations, such as positive slopes being appro-
priate in the commonest type of environment, still poten-
tially apply. But alternatively we propose that humans 
might apply general-purpose learning rules based on re-
cent delays to reinforcement to compare the options of 
switching or staying; subjects would estimate the next de-
lay to reward should they stay from the most recent 
apture is minimized 

ge TS (s) 

% Ponds 
left later than 

predicted 

Subjects leaving 
most ponds earlier 

(vs later) than predicted 

 

Observed 

168 41 14 vs 8 
183 43 12 vs 13 
207 52 10 vs 13 
170 53 7 vs 18 

 do not differ significantly between environments (c2 
3 ¼ 6:1, P ¼ 0.4) 

ial test: P ¼ 0.1). Analyses omit ponds visited in the first 15 min. 
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intercapture intervals on the current patch (rather than 
from N and T ). The Cox regression implies that the inter-
val since the last capture (I ) is also involved as a ready and 
appropriate estimate of time until the next capture. In any 
case the important point is that extrapolating an estimate 
of the next delay to reward from recent delays in the cur-
rent patch will always lead to a positive TS vs NS slope (e.g. 
giving-up-time rule in Table 4): the more captures in a set 
time, the shorter the intervals and consequently the lon-
ger the stays. So the new explanation for why we do not 
observe fixed-N, decremental or even fixed-T rules in envi-
ronments where they would be optimal is that to compare 
the two options of staying or leaving humans apply a gen-
eral-purpose learning rule that can produce only win-stay 
behaviour. 

We find the evidence for short-sighted delay minimiza-
tion as an explanation of our results no more than 
suggestive. Experiments involving a wider range of param-
eter values are needed to establish that the agreement of 
observation with prediction with respect to long residence 
times is not coincidental. Another issue is that delay 
minimization does not fit existing data from operant 
experiments on when to switch from a progressive-interval 
or progressive-ratio option: maximization of reward rate 
generated the best fit in some species, including humans, 
and, where not, what appeared to be minimized was the 
harmonic mean of the delays to the next four or so 
reinforcements (Houston 1987; Hackenberg & Axtell 
1993); such a currency produces behaviour intermediate be-
tween delay minimization and reward maximization. It 
would be surprising that humans are more prone to mini-
mize delay than other animals because the conditional 
reinforcers (e.g. money) used in this and most human ex-
periments do not differentially reinforce obtaining rewards 
quickly, as might food. However, these progressive-ratio ex-
periments on humans involved deterministic intervals: it 
would be fascinating if with stochastic intervals the extra 
difficulty of averaging success over multiple patches as 
well as within each patch causes humans to give up on 
that computation and consider only the interval to the 
next reward. Another difference is that in the progressive-
ratio experiments it was behaviour after multiple training 
sessions that fitted rate maximizing; when first encounter-
ing a patch-leaving problem humans might dare to attempt 
only the cognitively simpler strategy of minimizing delay 
and later as they gain experience switch to maximizing rate. 
Further Investigations and Applications 
of Human Patch Leaving 
Informing human subjects about the mechanics of this 
experiment was much quicker than training other animals 
for a similar operant task. Consequently we achieved 
subject sample sizes an order of magnitude greater than 
those in most studies of vertebrate patch leaving. This was 
valuable given the considerable interindividual variation 
encountered. It is also feasible to train a smaller number of 
humans over a longer period so that they can estimate 
environmental parameters better and hone strategies 
further (e.g. Wanchisen et al. 1992; Hackenberg & Axtell 
1993). The limitation with humans is that it is unfeasible 
to train them in a closed economy without the distrac-
tions of similar tasks in everyday life. 

Psychologists currently debate how modular the human 
brain is (Barrett & Kurzban 2006): one might expect that 
judgement of when to switch from a deteriorating re-
source would be an ideal candidate for such a module, 
given its likely importance throughout our evolutionary 
history (cf. Cosmides & Tooby 1994; Hills 2006). We think 
our cover story and animation would be sufficiently realis-
tic to invoke such a module. Furthermore, unlike in many 
other studies, our depletion curves were realistic: intervals 
were stochastic with the appearance rate proportional to 
the number of prey remaining. Nevertheless it might be 
worthwhile to replicate the experiment using a hands-on 
task in which foraging and travelling involve more effort 
than watching a monitor. For instance, Miller (1999) de-
scribes a task involving searching for beans in buckets of 
rice. 

However, the skill assayed in our experiment is appli-
cable far beyond physical foraging tasks, to all sorts of task 
switching in the modern world, and not only to seeking 
information in the external environment (Pirolli & Card 
1999) but also to searching in memory and problem solv-
ing. For instance we have run a similar set of experiments 
in which the task is to construct words out of a sequence 
of letters; finding solutions grows harder, so at some point 
subjects should request a new letter sequence (Wilke et al. 
2004; Wilke 2006). When to switch from a deteriorating 
resource can also be viewed as a special case of the exploi-
tationeexploration trade-off (Cohen et al. 2007). 

Subsequent research should test whether humans ever 
apply fixed-N or fixed-T strategies, for instance even if ex-
plicitly informed that initial patch quality does not vary. 
Another project would be to manipulate the timing of fish 
appearances so as to quantify more exactly how informa-
tion about recent intervals is combined. Such experiments 
make sense only when applied to subjects practised enough 
that their strategies are stable; detailed knowledge of a few 
subjects seems also the best way to establish the extent 
and nature of interindividual differences in strategy. 
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