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Abstract. A working assumptiorthat processesf naturalandcultural evolutionhavetailoredthe
mind to fit the demandsand structureof its environmentbegsthe question:how arewe to charac-
terizethe structureof cognitive environmentsDecisionproblemsfacedby real organismsare not
like simplemultiple-choiceexaminatiorpapersFor example someindividual problemsmay occur
much more frequently than others,whilst somemay carry much more weight than others.Such
considerationsire not takeninto accountwhen (i) the performanceof candidatecognitivemechan-
ismsis assessetly employinga simple accuracymetric thatis insensitiveto the structureof the
decision-maker'nvironmentand(ii) reasons definedasthe adherenceo internalistprescriptions
of classicalrationality. Here we explorethe impactof frequencyand significancestructureon the
performanceof a rangeof candidatedecision-makingnechanismsWe showthat the characterof
thisimpactis complex,sincestructurecenvironments demarttiatdecision-makers tradaf general
performancegainstperformanceon importantsubsetf testitems.As aresult, environmenstruc-
ture obviatesinternalistcriteriaof rationality. Failing to appreciate¢herole of environmenttructure
in shapingcognitioncanleadto mischaracterisingdaptivebehaviorasirrational.

Key words: adaptivebehaviordecisionmaking,externalismfrequencystructureyationalsynthesis,
significancestructure

1. Introduction to the Problem of Environment Structure

Organismsarematchedo thedemand®f particularenvironmentsDeep-sea&rea-
tures,for instance haveevolvedto requirea high pressureaqueousnvironment,
andto exploit the opportunitiesthat this environmentaffords (suchas profound
darknessasa backdropfor bioluminescencein orderto effect their survival and
reproduction.Whentakenout of the environmentthat they are adaptedto, such
creaturescan suffer explosive consequenceswithin biology this vital match
betweena biological systemandits environments termedit’. The environment
to which anorganismis fitted by evolutionis knownasits ‘niche’.

In much the sameway that biological devicesare matchedto their niches,
decision-makingmechanismsare also matchedto particular kinds of task (see,
e.g., Gigerenzer,Todd and the ABC Group, 1999). As in the caseof biological
fit, the suitability of thesecognitive mechanismss predicatedon the structureof
their environment.The succesof a particular cognitive mechanisnwill depend
notonly uponthetaskdemandeaf it, but alsothe natureof the problemit facesin
achievingthis task.Whilst a tin-openeris suitedto the taskof openingtins, it may
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notbe suitedto particulartins (suchasoil drums,etc.)— its limitations makeit ill-
fitted to certainproblemsbut suitablefor others.The extentto which anorganism
fits its niche,or a mechanismmatcheghe problemit faces,is the extentto which
it meetsthe demand®f its environment.

Theseconsiderationgmply straightforwardlythat differentenvironmenttruc-
tureswill, by definition, favor different cognitive mechanismsThus, to evaluate
the performanceof thesemechanismsye haveto takeenvironmentstructureinto
account.But whatis environmentstructureand how are we to measuret? Here
we concentrateon the ramificationsof two well-specifiedaspectof environment
structureon the performanceof cognitive decision-makingnechanisms.

To appreciatehesetwo forms of environmentstructure,imaginethatyou are
a university professor.Every oncein a while, a studentwho hasbeenoffered a
similar job by two universitiesapproachesyou for your advice.Which job offer
shouldtheyaccept?

(1) Sinceneitherjob applicationsnor offers of employmentaremadeat random,
onemight expectcertainuniversitiesto featuremorefrequentlythanothersin
this kind of decision.

(2) Sincenot all universitieshaveequalstatus,somedecisionsof this kind may
be moresignificantthanothers.

Supposehatyour studentknowthatacrossll thepossiblepairsof universities,
your adviceis correct80%of thetime. Supposehattheyalsoknowthatacolleague
of yoursis only correct70% of the time. Shouldthey approachyou for advice
ratherthanyour lessknowledgeableolleagueNot hecessarilyDespitethehigher
accuracyof your adviceacrosspossibleproblems the studentsmay quite rightly
rejectyou if the 20% of casesn which you err arethe mostimportantor frequent
oneswhile your colleaguedoesnot makethesdrequentcostlymistakesputrather
errsonly in trivial or uncommorcircumstances.

Notice thatin this example general-purpos&nowledge(high accuracyacross
possibletestitems)hasheensacrificedfor specialpurposeknowledge(high accur
acy acrosdrequentor significanttestitems).Notice alsothatfailure to appreciate
either frequencyor significancestructurein this examplewill lead observerso
concludethat studentsare actingirrationally in choosingthe lessknowledgeable
professor.

Puttingourselvesn the shoesof thejob-seekingstudenthow shouldwe assess
theperformancef eachprofessobeforedecidingwhoseadviceto heed Ve might
carefully selectspecifictestitemswhich we expectto bestdiscriminatebetween
hypothesesegardingthe professorsWhilst patternsof succesandfailure across
sucha setof diagnostictestitems may revealfacts abouthow the professorggo
aboutsolving their task, the performanceover sucha setwill not be representat-
ive of the professors’performancean generalunlessthis setof testitemsis itself
representative.

Similarly, assessinghe performancef eachprofessorusinga multiple-choice
paradigmin which (i) the answerto eachtestitem is weightedequally, and (ii)
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eitherevery possibletestitem is presentednce,or a uniform randomsampleof
possibletestitemsis presentedwill alsofail to capturethe underlyingstructureof
theproblem,andthereforewill misjudgeanydecision-makingnechanisnadapted
to thatstructure.

Assessingeachprofessoron a representativeor ‘natural’ sample(Brunswik,
1955) of testitemsis the only way to reasonablydecidebetweenthem. This ap-
proachto assessmerdnd the role of environmentalconsiderationgerivesfrom
anecologicalperspectiveon rationality which itself follows from the evolutionary
biology considerationsvith whichthis paperopenedIin thenextsectionwe present
the foundationsof this notion of ecologicalrationality, beforeturning to specific
examplesof frequencystructureandsignificancestructure,andtheir implications
for decisionmakingin structuredenvironments.

2. Ecological Rationality

Considertwo contrastingassumptionsabout how bestto conceiveof cognitive
mechanismsT hefirst stemsfrom anobservatioraboutorigins.

e Assumption:processe®f naturaland cultural evolution (sometimesvia the
lifetime learningfashionedby theseprocesseshavetailored the mind to fit
thedemandsindstructureof its environmentBehaviormustbe adaptivej.e.,
suitedto its properenvironmentto be successful.

This assumptiorinvokesa naturalprocesgevolution) and an externalistcriterion
of succesgthe environment)It hasadirectimplication.

e Implication:theassessmemf candidatecognitivemechanismsnustbe sens-
itive to factsconcerningenvironmenttructure.

The secondconceptionof cognitive mechanismsonsidershemto approximate
general-purposegptimal (and ultimately mythical) devices.lt is thusanassump
tion aboutgoals.

e Assumption:minds are bestunderstoodas approximatinga Laplaceansu-
perintelligence(Laplace,1951), which will, by definition, achievegeneral-
purpose optimal performancen any situation,no matterhow rare; for any
price, no matterhow costly; andfor anyreward,no matterhow meager.

This assumptionnvokesanideal,andimpliesinternalistcriteriafor success.

o Implication: generalpurposeperformancecannot, by definition, rely upon
assumptiongboutthe problemto be faced,hencethe behaviorof candidate
cognitive mechanismshouldconformto internalistrationalcriteria, e.g.,co-
herencetransitivity, etc.,sinceit is throughthe adoptionof thesecriteriathat
asuperintelligencavill achieveits optimal performance.

Whilst this secondclassicallyrationalapproacho cognitionis somewhabf a
strawman,theinternalistcriteriawhichit promotesarewidespreadvithin decision-
makingpsychologyandrelatedfields, takingthe form of prescriptivenorms;Your
SubjectiveProbabilitiesMust Sumto Unity! Be Transitivein Your Choices!Be
Coherent!Be Consistentin Your Preferencesin contrast,the first approachto
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cognition embracesan ecological perspectiveon rationality, dispensingwith in-
ternalistcriteria in favor of an externalistperformancemetric. In the sameway
in which evolutionarybiology assessethe fithessof adaptationsn termsof the
extentto which they performthe task for which they were selected gcologically
rationalreasonings reasonabléo the extentthatit is successfulvithin its proper
environment.

The perspectiveon cognition affordedby the conceptof ecologicalrationality
is a powerful one. Understandingts rationalerequiresthat certainlay termsbe
given technical meanings.Although spacelimitations preventa full accountof
its derivation, a few of the more pressingissueswill be briefly addressedere
(readersaredirectedto Millikan, 1984,for an accountof the role of evolutionin
underwritingthe attribution of functionsto cognitivemechanisms).

2.1. PROXIMALITY AND PROXIHOOD

First, the phrase‘proper environment’is usedhere (e.g.,in the first assumption
above)in the sametechnicalsensein which Millikan (1984, 1993) employsthe
term‘Normal conditions’to mean“the conditionsto which [a] device... is biolo-
gically adapted”(Millikan, 1984, p. 34). This biological adaptationis ultimately
evolutionary,but may alsoinvolve learning,asin the caseof a mechanisnmwhich
has evolved to detectmates,but is calibratedthrough some period of juvenile
experienceThe natureof a mechanism’sproper environmentmust typically be
establishedhistorically sinceit will usually be a pastenvironment,althoughas
notedabove,amechanisnwhich s calibratedby individual learningof somekind
may be properlysuitedto its currentenvironmentpr atleastto the environmentn
which it wascalibrated.In general the properenvironmentcannotbe established
statisticallyby establishingvhatthe currentenvironmenof amechanisntypically
is.

Sinceour knowledgeof pastenvironmentswill generallybe poor, establishing
the structureof theseenvironmentswith the degreeof precisionnecessaryn order
to predict,in onefell swoop,the adaptationsvhich resultedfrom them may be
hard,if notimpossible.However,taking asa working assumptiorthe hypothesis
that, whatevertheseenvironmentsvere, they haveshapedhe characternf extant
cognitive mechanismsllows us to approachcognition and behavioras evidence
from which to infer the adaptivetasksfaced by our ancestorsand the structure
of the pastenvironmentsin which our ancestorshad to achievethem (c.f. the
evolutionarypsychologyapproachto studying evolved cognitive mechanismsas
laid out by Cosmidesand Tooby, 1987). This approachis clearly circular: cur
rentbehavioris usedto infer pastenvironmentsvhich arein turn usedto predict
currentbehavior-generatingnechanismsHowever,this circularity is not vicious.
Eachturn of the cycle producesnew behavioralhypothesesvhich canbe tested
and usedto revise our environmentalassumptionsThis processis analogougo
thatemployedby the proponentf rationalanalysis(Anderson,1991)whoiterate
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througha similar cycle, repeatedlyrevising the natureof a decisionproblemun-
til the optimal solutionto this problemmatcheshe observedperformanceof the
naturaldecisionmakerstheyareinterestedn.

Second,in usingtermssuchas ‘success’and ‘task’ when describingthe per
formanceof a naturalmechanismwe are eliding an importantdimension.The
mannerin which theseterms should be interpreteddependson whetherone is
concernedwith explanationswhich are biologically ultimate or more proximate.
Whilst ultimately every biological adaptationhas beenselectedfor the task of
effectingits own reproductionwith appropriatecaveatsprganismsandthe organs
theycontaincanalsobeconsideredo facemoreproximateadaptivesubgoalge.g.,
pumpingblood, regulatingbodytemperaturefinding food, seducinga mate).Sim-
ilarly, althoughthe succes®f a naturalcognitive mechanisnis ultimately cashed
out in the samefitnesstermsasany biological adaptationjts performancecanbe
understoodmore proximatelyin termsof its reasoningsuccessThis reasoning
successcan be consideredas a proxy for the biological fitnessof a reasoning
mechanism.

However,establishinga proxihoodrelationshipbetweensomemeasuref suc-
cessfulreasoningand ultimate fithessis not straightforward.For example,the
captureof accuratenformationis oftenconsideredo beagoodmeasuref reason-
ing succesge.g.,Oaksfordand Chater,1994,1996,but seealsoKlauer,1999).In
hismodelof animalcommunicationGrafen(1990)equateshesuccessf achoosy
peahenwith her accuracyin capturingthe matevalue of her suitors.One might
expectthat to the extentthat a reasoningmechanisntendsto provide veridical
information to the deliberationor action systemswhich dependon this inform-
ation, sucha reasoningmechanismwould be fit. However, using the captureof
veridicalinformationasaproxy for fitnessignoresthe possibilitythatevenaccurate
informationmay sometimese epistemicallyworthless(EvansandOver, 1996).

For example,a decision-makingmechanismusedby a peahento judge the
quality of peacockanay provide equally accurateassessments two casesyet
if thefirst caseinvolvesa poor quality suitor andthe seconda high quality suitor,
thevalueof thesetwo piecesof equallyaccuratenformationwill differ greatly. The
first assessmerallows the peaherto confidentlyrejecta poor suitor, avoidingthe
costly mistakeof makingalong-terminvestmentwvith a poor-qualitymate.In con-
trast,thesecondassessmerllowsherto confidentlyacceptagoodsuitor,avoiding
the (presumably)muchlesscostly mistakeof overlookingthe currently available
goodmate.Thus,thesetwo decisionshaveradically differentimplicationsfor the
peahen’ditnessandhencethefitnessof the peacock-assessimgechanisnihatshe
employs.Moreover for speciesn which bothsexesarechoosywhetherafemale’s
assessmerdf a particularpotentialmateis accurateor not mayhaveno impacton
herfitnessif the suitorbeingassessetkjectsher (ToddandMiller, 1999).

Theseexampleshighlight the fact that it is the behaviorwhich resultsfrom
an organism’sreasoningrather than the reasoningitself which is the locus of
selectivepressure Whilst accurateand error-freereasonings clearly typically a
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conduitleadingto adaptivebehavior,it doesnot follow that ‘irrational’ reasoning
must have negativeconsequence®r the succesf an organism’sbehavior.As
we move alongthe explanatorydimensionfrom explanationsof decision-making
behaviorin termsof someultimategoal (reproduction}o explanationsn termsof
increasinglyproximategoals(successfutlecisionmakingof somekind) we do not
everreachalegitimateexplanatiorof anorganism’sbehaviorin termsof achieving
the consistencycoherencefransitivity, etc., that internalist rational criteria de-
mand.Goalsmaybeproximateto varyingdegreeshutneverentirely divorcedfrom
the ultimate goal which all naturaladaptivebehaviorsubservesTheseinternalist
criteria may, to a certainextent, be characteristiocof successfuldecision-making
behaviorin a particularenvironment,but they are not the decision-maker'gjoal,
merely a side-effectof its beingwell-designedo achievewhateverthat goal may
be. A decision-maker'sleviationfrom theserationalisttenetswill thereforenot
necessarilyesultin its reducedability to achieveits goals,sincethe prescriptions
of internalistrationality andthe goalsof a decision-makegarenot coincident.

For instance,n orderto meetthe criteria of classicalrationality, one’s prefer
encesmustbe transitive,thatis, if oneprefersA overB, andB over C, onemust
prefer A over C to remainrational. Reinforcementraining of various animals
demonstrateshat they spontaneouslyevelopnovel transitive preferencesvhen
trainedto make pairwise selectionsbetweenitems with adjacentrankson some
arbitraryscale(DeliusandSiemann1998).Thatis, whentrainedto preferA over
B, B overC, C overD andD overE theyspontaneouslpreferredB overD, despite
thesetwo items having beenreinforcedequally over the courseof the training.
Whilst thesedatasuggesthatthemechanisngoverningthelearningof preferences
embodieghe principle of transitivity, reanalysisof the original reinforcemeniex-
perimentgevealsthatsimpleassociativdearningrulescanaccountfor the ability.
Theauthorsconcludethatthe “capacityfor transitiverespondingcould thusbean
examplefor [sic] a trait that hasprimarily evolvedby exaptationratherthan ad-
aptatiori’ (p. 131,emphasisdded)oy whichis meantthatthe selectivepressureo
discriminatesimilar stimuli may accountfor the transitivepreferencesf pigeons,
rats,and humans ratherthanany advantagehey gain from transitive preferences
per se Indeedonecanfind examplef intransitivity in the untrainedpreferences
of animals,as shownin the work of Shafir(1994) on the response®f foraging
honeybeesto artificial stimuli.

2.2. OPTIMALITY AND ANALYSIS

Friendsof classicalrational normswill respondat this point that thesenorms
were neverintendedas prescriptiverules, but as descriptivetools. Sinceoptimal
performancewill be achievedby anagentfollowing the prescriptionsof classical
rationality, theyserveausefulpurposean providingthemeando calculateabench-
markagainstwhich naturalperformancemaybe measuredwhilst we asscientists
cancalculatethis benchmarkthereis no claim thatcognitivemechanismgerform
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anysuchcalculation.The behaviorgeneratedy arationalcognitivemechanismis,
howeverexpectedo bewell describedpr atleastapproximatedby suchoptimal
models.

We haveno objectionto this useof optimality modelling. However,it mustbe
pointed out that from this perspectivethe discoverythat humanreasoningfails
to meetthe internalistcriteria of rationality in somesituation (whetherit be ex-
perimentalor naturallyoccurring)shouldnot necessarilyoe the causefor concern
thatit hasappearedo bewithin thejudgementnddecision-makinditerature(e.g.,
Kahnemaretal.,1982).If internalistrationalcriteriawereneverexpectedo beim-
plementedy cognitive mechanismshut merelyto describetheir properbehavior
(c.f. Anderson’srationalanalysis) why shouldoneexpectarbitrarylaboratorytest
itemsor naturalbut novel scenariogo provokerationalresponsesgc.f. Kahenman
andTversky’sheuristicsandbiases)?

Indeed,a tradition existswithin behavioralecologywhich treatsexperimental
resultsnot asrevelatoryof an animal’s rationality, but as indicative of its evolu-
tionary history. For example,the field of optimal foraging theory (Stephensand
Krebs, 1986) experimentallyassessethe foraging behaviorof variousspeciesn
anattempto discovemotwhethertheyaresmartor stupid,or rationalor irrational,
butwhatthe selectivepressuresn foragingability musthistorically havebeenfor
thesespeciesandwhatresultsthesepressurediavehadin termsof the cognitive
adaptationsvhichthesespeciepossessWhenconfrontedwith what, by thelights
of internalistcriteria, mustbe consideredrrational behaviorratherthannotingthe
irrationality of the organisminvolved, thesescientistssearchfor environmentsn
which (andadaptivegoalsfor which) sacrificingthe missingelementsof classical
rationality makessense.

Thecontrasbetweertheapproactof behaviorakecologistandthatof decision-
makingpsychologistss crystalizedin their responseo the possibility of ‘inappro-
priate’ probability matchingin animalsand humans(Goodieet al., 1999). The
probability matchingphenomenoris most straightforwardlypresentedn a case
in which two siteswhich vary in the rate at which they yield food are attended
to in proportionto theseyields. Maximizing the consumptionof food would be
achievedby attendingsolely to the most productivefood source.Howeverit is
commonly held that animalsand humansoften split their attentionbetweenthe
sourcesn proportionto the expectedate of rewardat eachsource(e.g.,Davison
andMcCarthy, 1988; Tversky and Edwards,1966). Whilst learningtheoristsand
behaviorakcologistdhaveworkedtowardsdiscoveringn whichsituationssuchbe-
havioris successfubndadaptiveandin whichit is not (Williams, 1988),decision-
makingpsychologisthavetakenthe probability matchingphenomenoro beevid-
enceof humanirrationality (e.g.,Dawes,1988).
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2.3. RATIONAL SYNTHESIS

Furthermorealthoughcognitive mechanismganbe expectedo approximateop-
timal solutionsto the problemsthey havebeenadaptedo, we cannotassumehat
theyarealsobuilt from approximatelyrationalbuilding blocks.Oncewe haveset
asideoptimality theoriesas a meansto derive the contentsof organisms’heads,
it is difficult to seeimmediatelywhat assumptionsre justified when postulating
the mechanismsvhich underpinadaptivebehavior.An examplefrom the study of
vision highlightsthis problem.

David Marr (1982)and J. J. Gibson(1979) developedcontrastingapproaches
to solving the problemof how animalsachievevisual perception.Marr’'s compu-
tationalapproachyieldedthe pipelinemodel,comprisinga seriesof moduleseach
chargedwith performinga subpartof the entiretask.Eachsubpartwasconsidered
by Marr to bethelogical requirementf asystemableto form amodelof theworld
aroundit onthebasisof animpoverishedwo-dimensionahrrayof intensityvalues
(i.e.,light falling onaretina).In contrastGibson’secologicallyinspiredtheoryof
directperceptionconcentrate@n how the problemof vision wasintimately linked
with the problemsof actingin the world. For Gibson,the task of vision was not
to constructa three-dimensionamodel of the world from poor quality data, but
to revealthe ‘affordances’of the environmentin which the agentwaslocatedby
exploiting invariantsin therich spatio-temporaVvisual array.

However,whilst Marr's systemwasbuildableandhencetestable Gibson’sthe-
ory offered almostno clues as to what might constitutethe subpartsof visual
systemsAlluding to ‘resonatingstructures’did nothingto operationalizehis the-
ory, which sufferedasa result.For our presentpurposesyhatis interestingabout
this exampleis that Gibson’s ecological considerationgdid not directly suggest
candidatemechanismsn the sameway that Marr’'s computationaklpproachdid.
Without first principlesfrom which to derivethe contentsof people’sheadsfrom
whatsourcearewe to postulatecandidatecognitive mechanisms?

In Marr's approachwe can gleana clue asto a way forward. Although the
processefvolvedin the pipelinewereconsideredo be thelogical precursorgo
establishinga three-dimensionamodel of the system’ssurroundingswvhich could
be passedo a suitablespatialreasoningsystem Marr did not derivethe structure
of the pipeline entirely from first principles. Rather,severalimportantempirical
resultsfrom the neurobiologyof vision (e.g., Hubel and Wiesel, 1959) inspired
the designof someof the building blocksfrom which the pipeline was construc-
ted. Once Marr graspedthe propertiesof single cells in the cat striate cortex,
for example,he was able to usethis understandingo constructedge-detection
algorithms.Thedesignprocessvasthuslargely data-drivenindeedthelaterstages
of Marr’s pipelinewereneveradequatelymodelledduein partto alack of empir
ical datawith which to inform their design.Like Marr, we mustlook to empirical
studiesto suggestandidatecognitive building blocks.
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More generally,evolutionaryprocessesanbe expectedo build complexcog-
nitive aswell asperceptuakystemsrom combinationsof building blocks,them
selvesthe adaptiveresult of selectivepressuresAs suchwe should conceiveof
cognitive innardsas assemblie®f limited cognitive subparts tinkeredwith and
reassembledy mutation and selectionuntil they fit the environmentto which
evolutionhasadaptedhem.By usingempiricalevidencefrom the studyof adults,
childrenandotherspeciege.g.,CumminsandAllen, 1998)to suggesthestructure
of candidatecognitive building blocks, and then exploring how the behavior of
various combinationsof thesebuilding blocks varieswith the structureof their
environment,we can explore the behaviorof model cognitive systemsfrom the
bottomup, ratherthanthetop down (GigerenzerandTodd, 1999).

Forexampletherecognitionheuristic(GoldsteinandGigerenzer1999)is pred-
icated on a fundamentalpsychologicalphenomenonrecognition memory. This
phenomenotasbeenwell studiedby psychologistandanimalbehavioresearch-
ers.It clearly subservesnuchof our everydaybehavior.Therecognitionheuristic
utilizes recognitionmemoryto guide decision-makingoehaviorby exploiting the
fact thatrecognitiontendsnot to be randomlydistributedacrosspossibleentities,
butis typically concentratednthemostimportantones.Theheuristiccanbestated
as:"A recognizedoption shouldbe consideredo be higherthanan unrecognized
option on any importantdimension”. This is clearly a very simplerule. It canbe
consideredo be a building block in thatit is informationally self-containedand
canactasa subpartof largercognitive strategiege.g., Take The Best,Gigerenzer
andGoldstein,1999).

This processof rational synthesisthe recombinationof empirically validated
cognitivebuilding blocks,hasa counterparin thefield of behavior-basedobotics
(Brooks,1991a,b).Increasingly,roboticistsinterestedn building intelligent con-
trol systemsarecomingto realizethatproblemswhich appeaiintractablefrom the
perspectiveof control theorycanbe tackledeffectively by assemblinghetworksof
competingandcooperatingoehavioramodules Ratherthanproviding this system
with somegoverningmoduleresponsiblgfor coordinatingthe behaviorof these
subparts(a fearsomedesign problem), the robot designersrely on interactions
betweenthe robotandits environmento organizethe robot’s behavior.Although
discoveringan appropriatecombinationof modulesis not a trivial task, initial
successem both handcrafting(Brooks, 1991a)andatrtificially evolving (Cliff et
al., 1993) suchrobotssuggesthat this approachto understandinghe designof
complexsystemss fruitful.

In addition, roboticists interestedin using robotic systemsto model natural
systemshave discoveredthat building robots from empirically validated build-
ing blocks can lead to new and interestingtheoriesof animal behavior. Webb
(1994, 1996) reportsthe use of a robot cricket to demonstratahat the phono-
taxis achievedby naturalfemale cricketswhenthey approachcalling malescan
be achievedwith practicallyno cognitivemechanismatall, throughrelying onthe
acousticpropertiesof the cricket’s ears.
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A repeatedinding within theserelatedfieldsis thatcomplexadaptivebehavior
canarisefrom the interactionbetweersimplemechanismsndtheir environment.
Thisobservatiorformedthebasisfor ValentinoBraitenberg’§1984)syntheticpsy-
chology,the useof artificially constructedsystemg(in this casehypotheticalones)
to explorethe minimal propertiesrequiredof systemsbeforevariousintentional
attitudegqfears,desirespeliefs,etc.)areattributableto them.Therationalsynthesis
we employinvolvesthe constructiorof artificial reasoningystemavhicharecom
putationally undemandingand hencepsychologically plausible,from decision-
makingbuilding blockswhich arethemselvesomputationallyundemandingand
hencepsychologicallyplausible.We then explore the mannerin which the per
formanceof suchreasoningystemss dependenbn factsaboutthetaskstheyface
andthe structureof the environmenin which theyfind themselves.

2.4. THE THREAT OF EXPLOITATION

Our concernwith the explanatoryrole of environmentstructurein accountingfor
the performanceof a candidatecognitive mechanismhaslead us to rejectinter-
nalist rational criteria as unnecessaryor such explanationsFor example,what
useis transitivity acrossall choicesa cognitive mechanisntould everbe expected
to make,for instance,if this transitivity is achievedat the expenseof adequate
responsdime on a few crucial choices?Might it not be betterto sacrificethis
propertywithin a setof trivial choicesin orderto guarantedigh speedudgements
in afew do-or-diesituations?

Yettheemploymenof internalistrationalcriteriain thejudgementainddecision-
makingliteratureis commonplaceWhy is this the caseneansweris thatif the
domainto which a cognitive mechanismis expectedo apply is unstructuredas
it is by definition for the LaplaceanSuperintelligenceandasis oftenimplied by
the useof a flat accuracyperformancemetric, thenenvironmentakonsiderations
will appearsuperfluouslf succes®verhereis just asgoodassucces®verthere,
thengeneraperformanceavins out. A corollaryof this positionis thatanyfailure of
reasoris equallydamagingo adecision-maker'performancelrrationality will be
punished sincedisregardingnternalistcriteria of rationality will leaveone open
to exploitation. However, limited, structureddomainsmake salientthe fact that
internalistcriteria are obviatedwhen performanceon a limited and structuredset
of itemsis all thatis expectedf a cognitivemechanism.

Whilst an organismwhich fails to adhereto someinternalistmaxim exposes
itself to exploitationin the form of an appropriatemoneypump or Dutch book
(Schick, 1986), for example,if no suchexploitatory device existswithin the or-
ganism’senvironmentor if the lossesdueto exploitationare morethanmadeup
for by the gainsmadein othersituations,thenthereis no force to the internalist
exhortations.In contrast,if there doesexist an exploitatory entity leechingthe
irrational organism’sutility and the organism’sirrationality doeshave net nega-
tive consequencesn its fitness,thenone neednot appealto internalistcriteria to
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demonstratds irrationality. In this instancethe organismwill beirrational by the
lights of externalistecologicalconsiderations— it will be unfit.

2.5. SUMMARY

To recapitulate since organismsare adaptedo fit their environmentby selective
pressureshehaviorsandthe mechanismsvhich producethemareonly intelligible
in context.Cognitivemechanismarebespokanechanismdailoredto fit particular
circumstancegshey are‘madeto measure’ Whilst theremay be generaltrendsin
dress-makingor tailoring (i.e., preferencefor economy,goodnesf fit, quality
of material,etc.), theseare meretrends,not laws or a priori truths. In the same
way that opulent,wasteful,ill-fitting, uncomfortableclothing canbe fashionable
in certaincircumstancesso inconsistentjntransitive,seemingly‘irrational’ cog-
nition will oftenbe adaptivein particularstructuredenvironmentsAs researchers
we mustfind waysof appreciatinghe mannerin which a cognitive mechanism’s
nicheis reflectedn its structure— we too mustbe ‘madeto measureenvironment
structure.

In the remainderof the paperwe will exploretwo importantkinds of environ-
mentstructurewhich arewell-definedandhencemeasurablel-requencystructure
describeghe relative prevalenceof different decisionitemswithin a decisiondo-
main. Significancestructuredescribeghe relativeimportanceof differentdecision
itemswithin a decisiondomain.Eachclassof structurewill be exploredthrough
manipulatingthe structureof anartificial decisionproblemandobservingthe im-
pact this manipulationmakeson the performanceand structureof appropriate
decision-makindheuristics.Theseratherspecificexamplesarecarriedout herein
sufficientdetail to demonstratéhe sort of analyticaleffort thatis often necessary
to beginto understandvhy a particulardecisionmechanisnfits a particularenvi-
ronment.Theyalsoillustrate somemoregenerallessonsaboutenvironment/agent
interactionsandthe natureof ecologicalrationality asawhole.

3. Frequency Structure

We definethefrequencystructureof adecision-maker'nvironmentastherelative
frequencywith which eachtestitem is encounteredy the decisionmaker.A flat
frequencystructureimpliesthatno testitemis morelikely to be encounteredhan
any other.In contrast,a skewedfrequencystructureimplies that someitems are
morelikely to beencounteredhanothers.

3.1. THE GERMAN CITIES PROBLEM

Here we employ an arbitrary dataset (first reportedby Gigerenzeret al., 1991)
asan arenain which to explorethe effects of varying frequencystructure.The
GermanCities Problemis an inferencetask concerningthe populationsizesof a
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National Capital

Q.

Figure 1. Eachcity either possessegt+) or doesnot possesg...) eachof nine binary cues.
Citiesin possessionf any cuetendto havea larger populationsize thancities lacking that
cue.

setof Germancities. The taskis to judgewhich is the largerof a pair of German
cities. Thecitiesinvolved arethe 83 largestin Germany(all citieswith population
above100 000 inhabitantsin 1988). The information uponwhich the judgement
must be basedconsistsof nine binary cues(seeFigure 1), for instance whether
thecity hasa soccerteamin thetop leagueof the Bundesligathe Germarfootball
league).

This task haspreviouslybeenusedasan inferenceproblemwith which to as-
sessthe performanceof a rangeof decision-makingheuristics(Gigerenzeret al.,
1991; Gigerenzerand Goldstein,1996, 1999; Hertwig, Hoffrage and Martignon,
1999). However, this previousresearchhas proceededwith no attentionto fre-
quencystructure,assumingthat eachcomparisorbetweena pair of cities occurs
with equalfrequencyandthuscontributesequallyto ameasuref decision-making
performance.

GigerenzerandGoldstein(1996) reportthat the recognitionratesfor thesecit-
ies (i.e., the proportionof peopleclaiming to recognizeeachcity) increasesith
populationsize.On this basiswe might assumehatthe actualfrequencystructure
of this pairwisecomparisortask(if peopleencountethis problematall) is notflat,
but thathigh populationcities tendto be reasonedboutmorefrequentlythanlow
populationcities. This is clearly onemannerin which the GermanCities Problem
environmentcould be structured We explorethis anda secondclassof frequency
skew,alongwith their complementsby varying which pairsof Germancities are
morelikely to beencountered:
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(1a) ProductSkew: the likelihood that a pair of cities will be encounteredy a
decision-makers proportionalto the productof the city populationsizes.

(1b) ReciprocalSkew:thisis thecomplementf ProductSkew,thefrequencywith
which a pair of citieswill be encounteredbeinginverselyproportionalto the
productof the city populationsizes.

(2a) Similarity Skew: the likelihood that a pair of cities will be encounteredy
a decision-makers inverselyproportionalto the differencebetweerthe city
populationsizes.

(2b) Difference Skew: this is the complementof Similarity Skew,the frequency
with which a pair of cities will be encounteredeing proportionalto the
differencebetweerthe city populationsizes.

Whilst we do not know whetherone or any of thesefrequencystructurescharac-
terizesthe distribution of city-size comparisonghat peoplemight naturally face,
theseclassesf skew have beenchosenbecausesachis probablyrepresentative
of somenaturalproblems.For examplejf oneencounterentities(cities) atarate
proportionalto theirvalueon somedimension(populationsize),thenProductSkew
will describehefrequencystructureof pairwisecomparisondetweerencountered
entities. Similarly, if comparisondetweenvery different entitiesare handledby
somecrudeearly filter, the distribution of remainingcomparisonswill be biased
towardspairs of similar entities. A mechanismoperatingon this subsetwill be
subjectedo a decisionenvironmentwith a Similarity-Skewedrequencystructure.
Reddeer,for instance assesshe fighting ability of potentialopponentdy using
increasinglysensitivemeasuregClutton-Brockand Albon, 1979).The challenger
andharem-holdefirst roarateachother.If thereis a significantdifferencebetween
thevolumes thequieterstagretreatslf roaringfails to decidethe contesthe stags
proceedto the next cue: parallelwalking. If this cue alsofails to distinguishthe
stags,they proceedto head-butting Decision-makingmechanism®ccurringlate
in such a sequentialassessmenwill tendto haveto distinguishbetweenmore
similarly matchedpponentgshanthoseemployedearlierin the sequence.

For eachclassof frequencystructure we exploretwo degreeof skewness.

(1) Mild: the mostfrequentcity pair occurs10 times more often thanthe least
frequent.

(2) Extreme:the mostfrequentcity pair occurs100 times more often thanthe
leastfrequent.

In eachenvironmentthe leastfrequentcity pair occurs10 times. For eachenvir

onment,the proportionof comparisonsn which eachindividual city takespartis

shownin Figure?2.

It is importantto notethat, ratherthanbeinginterestedn the problemof com
paringcity sizesitself, we areconcernedvith the influenceof frequencystructure
on decisionproblemsin general(but to make our points we will concentratan
depthon this one particularexample).Indeedthe GermanCities Problemis one
with perhapdittle intrinsic import, servinghereasa model,ratherthanan object
of enquiryin its ownright.
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3.2. THE DECISION ALGORITHMS

To explorethe impactof environmentalfrequencystructureon the structureand
performanceof decisionmechanismswe chosea small setof suchmechanisms
for comparisonThe four mechanismsve useall maketheir choiceson the basis
of somesetof the availablecues,but they vary in the exactnumberof cuesused
andin the complexityof cueprocessingThe mostsophisticatedlgorithmis mul-
tiple linear regressionwhich first computesthe optimal weights for weighting
and combining (summing)all of the available cuesso that the total difference
(error) betweenthe algorithm'’s predictions(here predictedpopulationsize) and
the actual criterion values(actual populationsize) is minimized. Then,to make
eachindividual choicebetweenra pair of objects(e.qg.,cities), predictionsaremade
for the criterion value of eachobject by weighting and summingits cue values,
andthe object(city) with the higher predictedcriterion value (populationsize)in
thepairis thenchoserasthefinal decisionoutcome Multiple regressiorthususes
all availableinformation (cues),andis sensitiveto their predictiverelationshipto
everyobject.

The secondalgorithm, called Dawes’sRule, similarly usesall of the available
cues,but it processeshem in a rather less sophisticatedfashion. Initially, the
algorithm must computethe direction of associationbetweeneachcue and the
criterion value — that is, doesthe cue on averageindicate a higher or a lower
criterion value (so for example,doeshaving a Bundesligasoccerteamindicate
ahighercity sizein over half of the city comparisons?)Then,to makeeachindi-
vidual pair comparisonthenumberof negatively-associatecliesfor eachobjectis
subtractedrom the numberof its positively-associateduesto createa final score
or tally, andthe objectwith the higherscoreis chosen This simplemethodworks
surprisingly well — Robyn Dawes, after whom it is named,has demonstrated
its ability to comecloseto the performanceof multiple regression(Dawesand
Corrigan,1974)— eventhoughit is sensitiveonly to the ‘direction’ in which each
cuepoints(indicatinghigheror lower criterion values),but not how strongly.

The lasttwo algorithmstake a different approachto decisionmaking. Rather
thancombiningall of the availablecuesin somemannerthey considercuesone
at a time, sequentially,until the first cue that enablesa decisionto be madeis
found. This decisivecue will be the first which discriminatesbetweenthe two
objectsbeing comparedj.e., one object possessethe cue whilst the other does
not. If possessiomf the cueis positively correlatedwith the criterion, the object
in possessionf the cueis chosenlf possessionf the cueis negativelycorrelated
with the criterion, the objectlacking the cueis chosen.Oncea decisionhasbeen
reachedn this way the decision-makingprocessis at an end— all further cues
areignored.Thusall of the availableinformationneednot be (andusuallyis not)
consideredlet aloneprocessed— andthe ultimatedecisionis alwaysmadeon the
basisof just onediscriminatingcue.By consideringthe cuesin different orders,
differentone-reasordecisionmakingheuristicscanbebuilt (seeGigerenzerTodd,
andthe ABC researchGroup,1999,for further details).
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In particular,herewe usethe Take The Bestalgorithm, which orderscuesby
their validity — thatis, by how often they indicatethe larger criterion valuein a
pair of discriminatedobjects— sothatthe bestcuesareconsideredirst. TakeThe
Bestis thus sensitiveto the direction and strengthwith which cuesindicatethe
criterionvalues butits sensitivityto cuestrengthonly extendgo their ranking,not
to their precisedifferencesn strength(Hence the strengthor validity of two cues
could changesignificantly without affectinghow they areusedby Take The Best;
only if theirrelativerankschange— if onecuebecomestrongerthanthe other—
will theybeusedin adifferentorder.)

We also comparethe effectivenesof an evensimpler one-reasordecisional-
gorithm,theMinimalist heuristic,whichexamineguesn arandomorder,stopping
whenit stumblesuponthefirst cuewhich discriminatesbetweerthe objects.Min-
imalist is thus not sensitiveto cue strengthat all, but only to what directionthe
cuepointswith respecto the criterion (thatis, whetherit indicateshigheror lower
criterionvalues,or in otherwords,whetherits validity is aboveor below0.5). And
yet despiteits extremesimplicity, Minimalist doesnot fall far behindthe other
algorithms,aswe will seein the nextsection.

3.3. THEIR PERFORMANCE

Eachalgorithmwasparameterizede.g.,cuesorderedor weighted)on the basisof
the skewedenvironmentwithin which their performancavasto be assessedl his
ensureghat eachalgorithm was appropriatelymatchedto its environment.Each
algorithmwasthenmadeto judge which wasthe larger of every possiblepair of
cities andtheir averageperformanceacrossthe entire setof pairswascomputed.
However,somepairsof cities were presentednultiple timesaccordingto the fre-
guencystructureof theenvironmentThus,ajudgementoncerningafrequentpair
of cities contributesmoreto the performanceof an algorithm than a judgement
concerninganinfrequentpair of cities.

Whilst the performancenf eachalgorithmrelativeto the othersremainedstable
across environments,the absolute performance(i) increasedwith increasing
ProductSkew,(ii) increasedvith increasingDifferenceSkew,(iii) decreaseavith
increasingSimilarity Skew, and (iv) decreaseavith increasingReciprocalSkew
(Figure 3). It appeargeasonableghat choosingthe larger of two similarly sized
cities will be harderthan making the samejudgementsconcerningpairs of dis-
similar cities, and perhapsthat inferring the larger of a pair of smallercities will
be harderthaninferring the mostpopulousof a pair of largercities, sincesmaller
citiesmayresembleesachothermorethanlargerones.Becauseve aredealingwith
an artificial decisionproblemwe arein a positionto movebeyondtheseintuitive
assessmentsf difficulty andexploreexplanationdor the variationin performance
causedy our manipulationsof the problem’sfrequencystructure.

Thesourceof changesn thealgorithms’performanceslearlyliesin changesn
boththepredictivevaliditiesandthediscriminationratesof thecuesmadeavailable
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to the algorithms(Figures4 and5). Validity is definedasthe ratio of the number
of correctjudgementsnadeby a cueto thetotal numberof judgementsnadeby a
cue,whilst discriminationrateis definedasthe ratio of the numberof judgements
madeby a cueto the total numberof judgementssoughtfrom a cue. Somecues
respondoositivelyto acertainfrequencyskew,tendingto correctlypredictagreater
proportionof judgementsasthosecomparisonshatthe cuediscriminatesorrectly
becomeincreasinglyover-representedn contrast,othercuesmay sufferfrom the
samefrequencyskew, as the comparisonghat they deal with correctly become
increasinglyunder-representedn termsof both changesn validity anddiscrim-
inationrate,groupsof cuesappeaitto respondsimilarly to particularmanipulations
of frequencystructure suggestinghatatypologyof cuescould be constructed.

In summarywe haveseenthat frequencystructureaffectsthe performanceof
decision-makingalgorithms. Despite algorithms having beenconfiguredto suit
eachstructuredenvironmentsystematiaifferencesn their performanceverein-
ducedby skewingthefrequencystructureof theseenvironmentsn particularways.
Thegeneradropin performancenducedby Similarity SkewandReciprocalSkew
coupledwith the generalincreasein performancenducedby ProductSkewand
Difference Skew indicate that the former are harderto deal with than the lat-
ter. Whilst different cuesresponddifferently to different frequencystructuresthe
characteof this responsés often sharedoy severalkcues.

3.4. EXPLAINING PERFORMANCEIN TERMS OF ENVIRONMENT STRUCTURE

Thereare severalpossibleexplanationsfor the changesn performanceinduced
by changesn environmentstructurein this domain,someof which are specific
to the GermanCities Problemandsomeof which aremoregeneral Thefirst and

mostgeneralis that there exist propertiesinherentto dichotomous-cugairwise
choiceproblemswhich imply that particularkinds of frequencystructurewill be

moredifficult thanothers.The seconds thatunderlyingpropertiesof the decision
criterionof this particularproblemcontroltheimpactof differentfrequencystruc-

tures.Third, thedistributionsof the cuesacrosshe GermanCitiesmightinfluence
the mannerin which frequencystructureaffects decision-makingperformance.
Fourth,the changesn environmentstructuremay not makethe problemeasieror

moredifficult in general but eitherfavor or disfavor certainalgorithms,of which

the onestestedareexamples.

A combinationof theseexplanationsseemanostlikely to accountfor theres-
ults reportedabove.However,it is worth noting somepointsin favor of this first
explanation.Most importantly, all four decisionheuristicsrespondedimilarly to
the changedn environmentstructurethat we imposed.Theseheuristicsdiffer in
manyways,yet benefitor sufferfrom the samekindsof environmenstructure Fur-
thermore the effectson performancenducedby changesn environmenstructure
occurirrespectiveof the sensitivityof the algorithmsto thesechanges.
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Figure 6. Take The Best utilizes cuesin an order determinedby their validities. Here the
mannerin which this cue order changesas the result of frequencystructureaffecting cue
validitiesis shownfor the nineenvironments.

For example,the simplestof the strategiesested,Minimalist, is affectedby
changesin environmentalfrequencystructure,tracking the performanceof the
otheralgorithms(althoughalwaysata slightdistance)despitet notbeingsensitive
to mostof thesechangesRecallthat Minimalist usesthe polarity of eachcueto
governits inferencesAs such,this strategytreatsenvironmentsdentically unless
the polarity of at leastone cuediffers betweenthem (e.g.,a cuewhich predicted
high populationsize in the flat environmentpredictslow populationsizein the
skewedenvironment).

Forthefrequencystructuresexploredhere,out of the nine cuesin eightskewed
environmentsonly five reversalsof predictive validity occurred.Four of these
reversalsaffectedthe East Germanycue, whilst the remaining one affectedthe
Industrial Belt cue. The two cueswhich suffer validity reversalhavethe lowest
validity of the nineavailable ensuringthattheir reversaimakedittle impactonthe
performanceof thealgorithm.Thisis not surprisingsincethe polarity of cueswith
poorvalidity will bemoreeasilyreversedy manipulationof anenvironment'dre-
guencystructure. TheseobservationsuggesthatMinimalist is typically oblivious
to the manipulationsof frequencystructurethat we haveimposedon the German
CitiesProblem.

Thistype of analysisdrawsattentionto the sensitivity of algorithmsto changes
in their environmentMinimalist andDawes’sRule only accommodatehangesn
the polarity, of cues.Take The Bestis only sensitiveto changesn cue validity
which arelargeenoughto causechangesn therankorderof cuesby their validity
(seeFigure 6). Multiple regressioris in principle sensitiveto any changein cue
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validity. Giventhesefacts, it is understandabléatthe differencein performance
betweena sensitivealgorithm and a less sensitivealgorithm increaseswith the
performanceof the former, i.e., the degreeto which a sensitivealgorithm out-
stripsits lesssensitivecompetitorancreasesvith the degreeto which the sensitive
algorithmcanexploit the structureof its environment.

This canbe seenby looking at the differencebetweenthe performanceof the
mostsensitivealgorithm, multiple regressionandthat of the leastsensitive Min-
imalist, acrossall nine environments.This differenceis impressivelypositively
correlatedwith the absoluteperformanceof multiple regression(r=0.92). Thatis,
multiple regressiorbenefitsfrom its greatersensitivity to environmentstructure
by exploiting this structureto a greaterextent.Indeedall six suchcomparisons
betweenalgorithmsare correlatedin the predicteddirection (r>0.75) exceptthat
TakeTheBest'sadvantag@verDawes’sRulein termsof sensitivitydoesnottrans-
lateinto anincreasingadvantagever Dawesin the moststructuredenvironments
(r=—0.6).

It is importantto stressat this point thatwe areconsideringhereonly thefitting
performanceof the four algorithms— thatis, how well they canexploit the struc-
turein aparticularsetof datafrom a particularenvironment(This situationis also
describedasonein whichthedataseton which thealgorithmis trainedis the same
asthe dataseton which the algorithm’s performances tested.)In this case the
setof databeingfitted by the algorithmsis the entirefrequency-skewedgetof all
pairsof cities. Thus,thereis no generalizatiorto new data(wherethe training set
andtestingsetdiffer) in the analysiswe presentere.Generalizatiorperformance
is of coursealso of greatinterest(seeMartignon and Schmitt, this issue,for a
detaileddiscussiorof thegeneralizatiomobustnes®f simplealgorithmsincluding
Take The Best). But first we mustunderstandnore abouthow the structurein a
particularsetof datacanbe exploitedby algorithmsto makeaccuratedecisionsn
thatsamedataset.

How canwe testwhetherthechangesn performancenducedby our manipula-
tion of frequencystructurearenot dueto somefactspeculiarto GermarCities (and
otherrelatedenvironments)®neclue comesfrom Figure2, whereit appearghat
ProductandDifferenceSkewhavequalitativelyanalogousffectson thefrequency
with which different cities appeaiin testitems.Similarly, ReciprocalandSimilar-
ity Skew havecomparablesffectson thesedistributions. This could presumably
accountfor the similarity in performanceof algorithmsin theseenvironments—
but how couldthis patternarise?

The similarity betweenProduct-and Difference-Skewedenvironments,and
betweenReciprocal- andsimilarity-Skewedenvironmentsstemsfrom the under
lying structureof the distribution of populationsize acrossGermancCities. Since
the populationof GermanCities decreasesoughly exponentiallywith rank,form-
ing a so-calledJ-shapedistribution (seeHertwig et al., 1999), the largestcit-
ies (which featuremostfrequentlyin the Product-Skewe@nvironmentsyarealso
very different from most of the other cities, and hencefeature most frequently
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in the Difference-SkeweenvironmentsSimilarly, the manysmall cities aresim-

ilar in sizeto eachotherandhencearedisproportionatelyrepresentedh boththe
Reciprocal-Skewednd Similarity-Skewedenvironments(If the frequencystruc-
ture of eachenvironmenthadbeendeterminedusingthe rank, ratherthanthereal

value,of eachcities populationsize,thesesimilaritieswould be markedlyreduced
sincethey rely essentiallyon the clusteringof smallercities andthe isolation of

largercitiesalongthe populationsizedimension.)

Although pairsof the environmentsio indeedappearalike in their grosschar
acteristics ProductandDifferenceSkewdiffer considerablyin the extentto which
the mostcommonpairs are over-representeth comparisonto the leastcommon
pairs.FurthermoreReciprocalandSimilarity Skewdiffer in thatthelatterfeatures
particularmid-sizedcities far morefrequentlythanthe former. For examplejn the
extremeSimilarity-Skewedenvironment,Munster and Monchengladbachgities
which differ in populationsizeby only 2000inhabitantsfeaturein 28% moretest
items(mostly asapair togetherthantheaverageandin 62% moretestitemsthan
they appeaiin within the extremeReciprocal-Skeweénvironment(this accounts
for the blips to the right of centerof the plot of the two Similarity Skewenviron-
mentsshownin Figure2). Thesedifferencesn environmensstructurearereflected
in the fact that somecuesresponddifferently to manipulationswvhich appearsu-
perficially similar. Forexample the Soccercuegainsvalidity underDifferenceand
ReciprocalSkewbut losesit underProductandSimilarity Skew(seeFig. 4). Thus
the apparensimilarities betweenenvironmentsare perhapsot enoughto explain
themannerin which algorithmperformancerarieswith frequencystructure.

In line with the third explanationfor environmentalimpactson performance
given at the beginningof this section,it could be the casethatthe arbitrary setof
nine cuesuponwhich the algorithmsmustbasetheir judgementgavor certaincity
pairsover others.Perhapsve haveprovidedno cueswhich correctlydiscriminate
betweensmall cities, or betweensimilarly sizedcities. This type of explanation
drawsattentionto the fact that in structuredenvironmentsnot just the predict-
ive validity of a cue, but wherethat validity stemsfrom in the spaceof possible
problemitems,is important.In orderto assesshe relevanceof this argumentwe
needto know whetherthe nine cuesavailableto the algorithmsin this study are
representativef the 222 logically possiblewaysin which abinary cuecanapplyto
83 objects.

Thespaceequiredto plot eachof thesepossiblecuesis prohibitive, butwe can
expectto approximatehe qualitativeresultsby carryingoutthe sameprocesdor a
toy problemof five objects,andhence2® = 32 possiblecues(Figure7). Thereare
4+ 3+ 2+ 1=10 possiblepairwisecomparisondetweenfive objects(ignoring
order).In orderto representhemanneiin which a cue’sperformancas distributed
acrosghis spaceof possiblecomparisonsve plot thelowerleft half of a5 x 5 mat
rix containingthe outcomeof eachcomparisonWherea cuefails to discriminate
betweerapair of objectsthecell is left blank; correctdiscriminationsareshownin
grey;incorrectdiscriminationsareblack. Taking theright angleasthe origin, cells
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areindexedby the coordinate(x, y) with objectvalue on the criterion decreasing
with increasingr andincreasingwith increasingy. This ensureshatcellsnearthe
right-angleof the triangle representomparison$etweenobjectswith dissimilar
valueson thecriterion (e.g.,A vs. E), whereasells nearthe hypotenuseepresent
comparisondetweenobjectswith similar valueson the criterion (e.g.,B vs. C).
Cellsin the uppercornerrepresentomparisonsetweenpairs of objectswhich
both havehigh valueson the criterion (e.g.,A vs. B), whereascellsin the lower-
right cornerrepresentomparisondetweerobjectswhich bothhavelow valueson
thecriterion (e.g.,D vs.E).

The first thing to note aboutthe distribution of possiblecuesis that thereare
far fewer of themthanthereare possiblewaysof coloring the cells of oneof the
trianglesusedto representeachcue (i.e., 3% This indicatesthat the nature of
the problemis constrainingthe kind of cuesthat are possible.For exampleit is
impossiblefor one cueto either deal correctly with all possiblecomparisonsor
dealincorrectlywith all possiblecomparisongi.e., no triangleis entirely grey or
black). We canseethat whilst cuesexistwhich correctly discriminatelarge cities
from smallcities(i.e., correctlydealwith cellsin theright angleof thetriangle)and
correctly discriminateamongstarge cities (i.e., the uppercorner),or small cities
(the lower-right corner),thereare no cueswhich correctly discriminateamongst
many similar cities (i.e., the cells lying along the hypotenuseof the triangle are
neverentirely grey). Theseare facts aboutbinary cuesin general,and thus will
applyto awide rangeof environments.

However,it is clearthat this reasoningdoesnot straightforwardlyapply when
continuouslyvalued cuesare availableto an algorithm which is capableof us-
ing them.One continuouscueis sufficientto accuratelydiscriminatebetweenall
adjacentobjects. Furthermore a discretecue with n possiblevaluesis capable
of distinguishingbetweenall of the adjacentpairs of n objects.A discretecue
with avalencyof n/2 is ableto correctlymakehalf of thesepairwisecomparisons
without incurring error on the remainingpairwise comparisondetweenadjacent
objects.Two suchcueswould thusbe sufficientto achieveperfectperformanceon
theleadingdiagonalof a problem’strianglediagram.

With this understandingf the spaceof possiblecuesin hand,we arein a pos-
ition to assesshe representativeness the cuesmadeavailableto the algorithms
in the GermanCities Problem.The setof cuesusedin this problemwerecollected
from relevantalmanacscontainingdataon Germancities (Ulrich Hoffrage and
RalphHertwig, pers.comm.,1999).As suchthecuesarearelativelyrepresentative
sampleof the kind of factspeoplemight know aboutcities. The mannerin which
correctandincorrectjudgementsredistributedoverthe spaceof possiblecompar
isonsfor eachcueis plottedin Figure8 accordingto the sameprinciplesdescribed
abovefor thefive-objectcase Thecuesinvolvedin the GermarCitiesProblemtend
to allow discriminationamongstthe larger cities, andbetweenlargerand smaller
cities, but fail to discriminatecorrectlyamongstimilarly sizedcities, or amongst
small cities. The first of thesedeficienciesstemsfrom the logical constraintsof
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Figure 8. Judgementdistributions for each of the nine cues made available to the de-
cision-makingheuristicsin the GermanCities Problem.Eachtrianglerepresentsll possible
pairsof cities(becausgair orderis irrelevant,the upperhalf of eachmatrixis redundantand
henceomitted).Citiesarearrangedn orderof increasingpopulationsizefrom left to right and
top to bottom. Cuesarearrangedn order of increasingvalidity in a flat environmentGrey
indicatescorrectinferencesplackindicatesincorrectinferencesandcuesfail to discriminate
in theremaininginstances.

pairwise choice and binary cues.As just arguedfor the five-object case,there

simply do not exist cueswhich correctly deal with many comparisonsbetween
objectswith similar valueson the criterion dimension.In orderto accuratelydeal

with eachcomparisonalong the hypotenuseof the triangle diagramspresented
here,83 binary cuesmustbe consulted.

In contrastthefact thatthe cuesavailableto the algorithmsfacing the German
Cities Problemdo not tendto discriminateamongstsmall cities, is not a resultof
someconstrainton binary cues.This deficiencyis dueto this setof nine cuesbeing
a biasedsampleof logically possiblecues.ls thereanexplanationfor this bias,or
mustit beattributedto thevagariesof samplingerror?Therearereasongo believe
thattheformeris mostlikely.
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Whilst theremay existcueswhich discriminateamongssmallercities, theyare
unlikely to berecordedn almanacsyhich, sincelargercitiesaremoreinteresting
to theirreaderstendto recordfactswhich aretrue of largecities,andfalseof small
ones.In addition, thesefacts are not true of every large city, but tendto be false
of almosteverysmall city, ensuringthat they tendto discriminateamongstlarge
cities aswell asbetweenarge cities andsmall cities, but not to discriminatewell
amongssmallcities.

Thus,randomlysamplingcuesfrom thosemadeavailablein the public domain
will tendto resultin asetof cueswhichis notrepresentativef thespaceof possible
cuesbutwhichis biasedowardsthosecuessuitableto thestructureof the problem
whichtheyhavebeenselectedor. This setof cueswill notbeableto accommodate
a manipulationof environmentstructure,if this manipulationopposeghe natural
structureof the problemresponsiblefor their existencein the public domain.In
skewingthe GermanCities Problemin the directionof small populationsize,we
haveopposedhe naturaltendencyfor large cities to be morefrequentlyreasoned
aboutand discussedAs a result, the validity of cuestakenfrom almanacshas
tendedto fall underReciprocalSkew.

This argumentdoesnot apply solely to the GermanCities Problem butin prin-
ciple canbe generalizedo any decisionproblem.Well adapteddecisionmakers
will tendto recognizeand attendto cueswhich are well-suitedto the predictive
demandf the problemasinfluencedby its frequencystructureandsignificance
structure.This impliesthat, to the extentthat suchcuesarelogically possible the
cuesusedby suchdecisionmakerswill tendto discriminatecorrectly between
frequentand/orsignificantpairs of objects,possiblyat the expenseof rareand/or
insignificant pairs. However,such a selectionof well-adaptedcueswill not ne-
cessarilysupportperformanceon a differently structureddecisionproblem.More
specifically,if a decisionproblemis artificially skewedn favourof preciselythose
itemswhich areinsignificantin the naturaldecision-makingproblem,naturalcues
will tendto beunableto copewith this manipulation.For the GermanCities Prob-
lem, this inability to copewith unnaturalproblem structureis manifestedin the
poor performancef algorithmsin the ReciprocalSkewconditions.

In concert,the effectsoutlined aboveensurethat the structureof the nine cues
madeavailableto algorithmsin the GermanCities Problemfavoursenvironments
wherethey are more often called on to choosebetweenpairs of large cities, or
betweerlargeandsmallcities (ProductandDifferenceSkew,respectively) Forthe
samereasonsthesealgorithmswill tendto performpoorly whenforcedto choose
moreoftenbetweersmallor similarly sizedcities (ReciprocalndSimilarity Skew,
respectively).Thesegeneraltrendsshouldapply to any binary-cue-baseadhoice
environmentwhere alternativesat one end of the criterion dimensionare more
importantor frequentthanthoseat the otherend.

In summary,the variation of algorithm performancewith environmentstruc-
ture can be tracedto severalsourcesFirst, someclassesf frequencyskew are
inherentlydifficult to accommodateueto the natureof binary cuesandthe pair-
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wise choice paradigm.This argumentaccountsfor the reducedperformanceon

Similarity-SkewedenvironmentsSecond someclasse®f frequencyskewaredif-

ficult contingentonthe cuesavailable.This argumentccountdor thereducedoer

formanceon Reciprocal-SkeweénvironmentsThird, somealgorithmsare more
sensitiveto environmentstructurethanothersandarethusmorelikely to accom

modateparticularmanipulations.The heuristicsassessetierevary in their sens-
itivity to environmentstructure,and this sensitivity manifesteditself in differ-

encedn thesizeof the advantagenealgorithmachievedoveranotherin different
environments.

3.5. CONCLUDING THOUGHTSON FEQUENCY STRUCTURE

By employingthe GermanCities Problemasa toy environmentwe haveshown
thatfrequencystructure@mpactsonthe performancef decision-makingilgorithms.
The characterof this impactis complex.The presenceof environmentstructure
demandghatdecision-makersradeoff generalperformanceagainstperformance
onimportantsubset®f testitems.As aresult,not only thevalidity of acue,butthe
sourceof this validity is of importanceto decisionmakers.Cueswhich gaintheir
validity from frequenttest-itemsare more usefulthanequivalentcueswhich gain
their validity from raretest-items.

Furthermore,environmentstructureinteractswith the necessaryand contin-
gentcharacteristicof a decisionproblem, and the strengthsand weaknessegsf
a particularalgorithm,to influencethe performanceof thatalgorithm.

4. Significance Structure

As well asdiffering in their relativefrequencynaturallyoccurringproblemsdiffer
in their relative significance Considera list of decisionswhich might befacedon
theway to work: Whichtie shouldl wear?Shouldl walk to the busstopor ride my
bicycle?Which busshouldl catch?Is it safeto crossthe road?How fast should
I walk? How fastis that car approaching@houldl jump left or right? How am |
goingto makethat9:15meetingnow?

Clearlythesedilemmaddiffer alongmanydimensionssomeareleisurely,some
pressing;someare conscioussomeunconscioussomeare casual someweighty.
Herewe will considerthe effectsof variationin the importanceor gravity of de-
cisionproblemsonthestructureandperformancef decision-makingnechanisms.

Therearetwo waysin which the significancestructureof a decisionproblem
can be mischaracterizedFirst, the goal of the decision-makemay be miscon-
ceived.For example,doctorsmay be assessedn the accuracyof their diagnoses
whenwhatis significantto themis not forming anaccuratgudgemenf whatails
apatient,but prescribingmeasuresvhichwill alleviatethis ailment.Whilst correct
diagnoseareclearly a steptowardsthis goal, they do not constituteit. Theremay
be diagnosticerrorswhich haveno effect on a doctor’s prescriptionbecausehe
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confoundedconditionsdemandthe sametreatment(seeConnolly, this issue,for
discussioralongtheselines). Similarly, the prescriptionof anincorrecttreatment
regimemay, nonethelesssometimesesultin a curedpatient(e.g., prescribinga
courseof vitamin supplementscompleterest and avoidanceof dairy products,
whenthe correcttreatmentwas merelyrelaxation).Mischaracterisinghe aims of
thedecisionmakerleadsto a misunderstandingf whatcountsassuccesandwhat
countsaserror.

The second,andrelated,mannerin which significancestructuremay be mis-
construeds in failing to appreciateghatdifferent decisionproblemsdiffer in their
significanceto the decision maker,i.e., failing to discriminate betweenincon-
sequentiadecisionsandthoseof muchgreatersignificance A doctor confronted
with whatappeardo be a caseof influenzafacesa decisionproblemwhich differs
from thatof a colleagueencounteringvhatappearso be a caseof meningitis.Er-
rorsin treatingsuchcasesvould haveradically different consequence#ssuming
that a doctor will not treat his patientswith 100% accuracy,it is of the utmost
importancethat the errorswhich are madeare distributedamongstthe lessim-
portantcasegatherthanthoseinvolving life-threateningillnessesIndeed,it may
be necessaryo tradeoff accuracyin generalagainstaccuracyover an important
subsetof decisionitems (Sober,1994). Assessinga doctor’s performanceusinga
metric which is insensitiveto differencesin significancewill fail to capturethis
trade-off.

In general,a problem’ssignificancestructureis the mannerin which the dif-
ferent decisionitems which constitutethe problemdiffer in termsof their con-
sequencefor the decisionmaker’sgoal. For dichotomougdecisionproblemssuch
as the onesconsiderednhere, in which a testitem’s significancecan be opera-
tionalized as the differencein value betweenthe two possibleoutcomesof the
decisionregardingthatitem, significancestructuredescribeghe mannerin which
this differencevariesacrosghe spaceof possibletestitems.

4.1, THE MUSHROOM PROBLEM

Imagine a fungivorousforagerwhich, throughoutits lifetime, encounteranush-
rooms,one after the other. Whilst someof thesemushroomsare good sourcesof
valuablenutrition, otherscontaindamagingtoxins. When confrontedby a mush-
room, the foragermustdecidewhetherto eatit, or rejectit in favor of a safebut
mediocrefood sourceassumedo be everpresenin theforager'senvironmentThe
foragermustmakeits decisionson the basisof binary cueswhichit is sensitiveto,
andwhichtogethemescribeeachmushroomfor instancepdorousversusodorless,
colorful versusdull, andsoon.

The significanceof thesedecisionswill vary acrossthe spaceof mushrooms
liable to beencounteredby aforager.How will thisvariationimpactonthesuccess
of the different foraging strategieghat sucha foragermight employ?In orderto
answerthis questionwe simulatedsucha forager,andexploredhow the perform-
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Cue Validity Hits Misses  False Alarms _ Rejections
odor 0.886 0.419 0.015 0.098 0.467
gill-size 0.757 0.483 0.208 0.035 0.274
bruises? 0.744 0.339 0.077 0.179 0.405
population 0.670 0.240 0.052 0.278 0.430
gill-color 0.666 0.305 0.121 0.213 0.361
spore-print-color 0.661 0.429 0.250 0.089 0.232
habitat 0.624 0.466 0.324 0.052 0.158
gill-spacing 0.616 0.148 0.014 0.370 0.468
stalk-color-above-ring 0.556 0.445 0.371 0.073 0.111
cap-shape 0.555 0.290 0.217 0.228 0.265
stalk-shape 0.553 0.319 0.248 0.199 0.234
stalk-color-below-ring 0.552 0.439 0.369 0.079 0.113
cap-surface 0.551 0.377 0.308 0.141 0.174
stalk-surface-below-ring 0.537 0.082 0.027 0.436 0.455
cap-color 0.533 0.292 0.241 0.226 0.241
ring-number 0.522 0.518 0.478 0.000 0.004
ring-type 0.522 0.518 0.478 0.000 0.004
stalk-surface-above-ring 0.515 0.052 0.019 0.466 0.463
veil-color 0.505 0.024 0.001 0.494 0.481
gill-attachment 0.504 0.024 0.002 0.494 0.480

Figure 9. The appearancef eachmushroomis characterizedby 20 dichotomouscues.The
ratesof Hits, Misses, Fals@larmsandcorrectRejectionshavebeencalculatedacrossheen-
tire setof 8124mushroomsHits arecasesn which a cuecorrectlyindicatesghata mushroom
is edible. Missesare casesn which a cueincorrectly indicatesthat a poisonousmushroom
is edible.FalseAlarms arecasesn which a cuefalsely indicatesthat an edible mushroomis
poisonousCorrectRejectionsarecasesn which a cuecorrectlyindicatesthata mushrooms
poisonousCuesareshownorderedby their Validity, whereValidity=Hits+correctRejections.

anceof variousforagingstrategiesvasaffectedby manipulationof thesignificance
structureof the artificial mushroomenvironmenit inhabited.

We utilized Schlimmer's(1987)databasef 8124differentmushroomgrom 23
specieswithin the AgaricusandLepiotafamilies (availablefrom the University of
California, Irvine MachineLearningRepository;Blake et al., 1998). Eachmush-
room was describedusing 20 binary cues(dichotomizedversionsof the original
data),asshownin Figure9. Of the8124mushrooms4208(51.8%)wereclassified
asedible,whereas3916(48.2%)wereclassifiedas poisonousThe ratesat which
eachcueis ableto distinguishpoisonousrom ediblemushroomsanbe captured
by four values:Hit rate, Miss rate, FalseAlarm rate,and CorrectRejectionrate.
Theseratescorrespondo the cue’stendencyto correctly or incorrectly indicate
ediblemushroomsandincorrectlyor correctlyindicatepoisonousmushroomse-
spectively,andarereportedin Figure9. A cue’svalidity canbe calculatedasthe
proportionof correctinferencest makes,.e., asthe sumof its hit rateandcorrect
rejectionrate.

Thesignificancestructureof this decisionproblemcanbe manipulatedy defin
ing different payoff matricesgoverninga decisionmaker’sperformancekFigure 10
depictsthe four significancestructuresve explored.Thefirst represents scheme
which assumeso significancestructureexists.A decisionmakerreceivesa point
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Figure 10. Four payoff matricesdeterminingthe significancestructureof the Mushroom
Problem Eachcell containghepointsawardedor anindividual decision.Dashesn the Odor
matrix indicatethatno mushroomsverepresenin a particularcell.

for eachpositive responseto an edible mushroomand each negativeresponse
to a poisonousmushroom,and no points for any other responsesThis scheme
rewardsaccurateclassificationandis termedOrthodoxsinceaccuracymetricsof
this type dominatemuch of decision-makingpsychology.A studentbeingtested
on his knowledgeof mushroomanight be assesseih this way — the studentis
sentout into the environmentwith two basketsone labelededible one labeled
poisonousUpon his return,ateacherawardsa point for everymushroonthatthe
studenthasplacedin the correctbasket.

This Orthodoxsignificancestructuretreatsall successeasequivalentandcom
mensurateand all errorslikewise. However,a forageractually consumingor re-
jecting mushroomshas not achievedits goalsto the sameextentby rejectinga
poisonousmushroomas by consumingan edible one. Although theseare both
appropriatebehaviors,n the latter casethe foragerhasgainedvaluablenutrition,
in theformerit hasavoidedbeingpoisoned Similarly, for suchaforager,the con-
sequencesf thetwo classe®f possibleerror differ radically. Whilst therejection
of anediblemushroomincursanopportunitycost,the consumptiorof a poisonous
oneincursthedebilitating effectsof whatevertoxin the mushroomcontains.

The secondpayoff schemeattemptsto capturethis significancestructureto a
greaterextentthrough awardingpoints for eating edible mushroomsdeducting
points for eating poisonousmushroomsand awardinga negligible amountfor
rejecting mushroomsin favor of the alternativemediocrefoodstuff. The payoff
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matrix is constructedsuchthat eating all mushroomsachieves,on averagethe
samescoreasrejectingall mushroomsThis schemecanbe consideredo offer the
foragerthe choicebetweenrarisky, but potentiallyhigh valuefood item (the mush-
room)anda safe,but relatively low valuefood item (the alternative).lt is termed
Flat, sinceeachpoisonousmushroomandeachedible mushroomareequivalently
poisSoNouUsor nutritious.

Thetwo environmentglescribedso far canbe adequatelycapturedoy a signal
detectionparadigm.In varying the pointsawardedfor eatingandrejectingmush-
roomswhich arepoisonousor ediblewe havebeendefiningthe costsandbenefits
of thefour cellsin asignaldetectiormatrix— hits, missesfalsealarmsandcorrect
rejections.

However,significancestructurecan be finer grainedthan the signal detection
picture implies. In the third environment,termedOdor, the value of consuming
ediblemushroomsandthe costof eatingpoisonousmushroomss correlatedwith
their odor. Whilst the fungivore can discriminatebetweenodorousand odorless
mushroomsthe significanceof a decisioninvolving a particularmushroomde-
pendsonwhetherthemushroonmsmells'foul’, ‘fishy’, ‘pungent’,andsoforth, that
is, on featureswhich arenot directly availableto the forager,but may be recover
ablefrom combinationsof the dichotomouscueswhich areavailable.Within this
environmentthe costsand benefitsof hits and missesvary systematicallyacross
thespaceof decisionitems.

Furthermoresignificancestructurecansometimesedifficult to capturein the
termsof signal detection.For example,in reality poisonousmushroomamay be
more dangerousthan the deductionof points implies. The fourth environment
is identical to the Flat environmentsavethat the consumptionof any poisonous
mushroonresultsin the deathof the fungivore,thatis, animmediateandirrevers-
ible assignmenbf a scoreof zeropointsto the forager. This Lethal environment
ensureghat successeandfailures ceasetio be measuredn commensuratevays.
No amountof ediblemushroomsanbe eatento offsetthe consumptiorof a leth-
ally poisonousnushroom This is indicatedin Figure 10 by assigninga utility of
negativeinfinity to the misscell of the Lethal payoff matrix.

Thesefour environmentslemonstratéhe rangeof possibilitiesthata problem’s
significancestructurecancover.Realdecisionproblemscanbe expectedo exhibit
significancestructuresvhich aremorecomplexstill thanthoseexploredheresince
neither options, nor the evidenceupon which to decidebetweenthem, needbe
binary in nature;further, differing outcomesmay not be aseasily reducibleto a
singledimensionalof utility. In the nextsectionwe assesshe effectsthatthe four
variationsof significancestructurehaveonthe performancendstructureof aclass
of simpledecisionmakingalgorithms.

We can make somegeneralpredictionsregardingthe effectsof thesemanip-
ulations. For instance thosealgorithmstailored to an inappropriatesignificance
structureshouldtendto beoutperformeddy thosewhich areappropriatelytailored.
In addition,algorithmstailoredto the Lethalenvironmenshouldbe conservativen
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Figure 11. Eachcueis treatedin one of sevenways. The presencer absencef a cuecan
prompta foragerto reject(cross)or accept(tick) a mushroomor to checkthe next cue (?).
Notice thatsince,acrosgthe entirepopulationof mushroomsthe presencef eachcuetends
to indicateedibility, high-performancdoragersmight be expectedo utilize rules5, 6, and7
morethanl, 2, and3. Rules3 and5 alwaysstop searchsincethey proposea definiteaction
basedon the presencer absencef the cuetheyapplyto. Rule4 ignoresthe cueit is applied
to.

theirfood choice whilst thosetailoredto the Flator Odorenvironmentshouldtend
to makeerrorswithin a subsetf insignificantmushroomsn comparisorto those
algorithmstailoredto the Orthodoxenvironmentfor whomoneerroris equivalent
to anyother.

4.2. THE ALGORITHMS

Herewe explorea classof lexicographicdecisionalgorithms.Like TakeThe Best,
describedabove,thesedecisionheuristicstreatevidenceone pieceat a time and
makea decisionbasedon the first pieceof evidenceto suggest courseof action
otherthan checkingfor moreinformation,i.e., thefirst pieceof information that
allows a choiceto be made.In this casethe evidenceis in the form of binary
cueswhich areconsultedin someorder (tied ranksare possiblein which casethe
tied cuesare consultedin randomorder).Eachcueis associatedvith a stopping
rule. This rule determinesvhetherthe presenceor absencef the cueleadsto the
foragereatingor rejectingthe mushroomor to theforagerconsultingthe nextcue.
We modelsevendifferentstoppingrules(Figure11). If analgorithmchecksall 20
cueswithout making a decision,the actiontakenis determinedby a biasedcoin
toss.

To understandhow significancestructurecaninteractwith the structureof de-
cision mechanismsand affect their performancewe will focus on this example
task to find and comparestrategiesvhich performwell within eachof the four
environmentsdescribedabove.We cannotassessachmemberof the class of
lexicographicrulessince,giventhat cueranksmay be tied, thereare over 20! or-
deringsof cuesandeachorderingcanbegovernedy 7°° combinationsf stopping
rules.To find lexicographicalgorithmswhich suit the MushroomProblemundera
particularsignificancestructure we implementedaform of parallelsearchnspired
by naturalevolution.

Thegeneticalgorithmwe used(Goldberg,1989;Holland,1975;Mitchell, 1996)
startedwith a populationof 1000randomlygeneratedilgorithmsandassessethe
performanceof eachon the MushroomProblemundera particular significance
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structure(i.e.,in aparticularenvironment) Eachassessmeimvolvedtheparticular
algorithmencounteringlO0 mushroomsirawnat randomfrom the populationof
8124, eatingor rejectingeachmushroom,and gaining or losing points asa res-
ult. Onceeachof the 1000 algorithmswas assesseda new populationof 1000
algorithmswasgeneratedy allowing the betterperformingalgorithmsto ‘repro-
duce’, thatis, to be copiedinto the next generation.This copying procedurevas
subjectto a smallchanceof errorwhich introduced'mutations’ into the strategies.
The newly generategopulationof offspring algorithmswasthenassessedsbe-
fore and the processwas repeateduntil 5000 generationf simulatedevolution
hadtakenplace.

As aresultof this assessmenteproductionandmutationcycle, the population
of 1000algorithmsbhecamebetterandbetteradaptedo the problemit faced.Over
manythousand®f generationperformancencreasedsthealgorithmsconverged
on successfubrderingsof cuesandappropriatestoppingrulesfor thesecues.

In eachof the four environmentsdepictedin Figure 10 we assesse@0 inde-
pendentpopulationsof 1000 algorithmseachfor 5000 generationsof simulated
evolution. During reproduction,therewasa 1 in 100 chancethat eachof an al-
gorithm’s parametersnight be mutated Mutations,whentheydid occur,consisted
of (i) a cue’'srank beingreplacedby a randomvalue drawnfrom the set{0.5, 1,
1.5...20,20.5}, (ii) acue’sstoppingrule beingreplacedoy onedrawnat random
from the sevenpossiblerules,or (iii) a strategy’sbiasedcoin beingreplacedby a
coinwith biasdrawnrandomlyfrom therange[0,1].

For eachof the four environmentsthe top five (0.5%) foragersfrom eachof
the 20 populationsat generation5000 were collected,and their long-termmean
performancever10000lifetimes(i.e.,1 000000mushroomsyvascalculatedThe
bestsuchlong-termmeanperformancevasrecorded Algorithms which failed to
achievealong-termmeanperformancevithin 5% of this thresholdwerediscarded.

Duplicate equivalentstrategieswere then excluded. Strategieswere deemed
equivalentf they exhibitedthe samecue orderingand appliedthe samestopping
rulesto thesecues,onceredundantueshadbeenremoved Redundantueswere
either those associatedwvith stoppingrule 4, thosewhich were never consulted
because cueassociateavith rule 3 or 5 precededhemin the cueorder,or those
which, overthe courseof 10 000 lifetimes, althoughconsulted hadneverstopped
search.The remaining‘elite’ strategiesare thusunique and performwell in the
environmento which theywereadapted.

4.3. THE ELITE STRATEGIES

At thispoint,wewill delveinto aspecificdetailedanalysisof theevolvedstrategies
in theseenvironmentdo seewhatgenerabprincipleswe canuncoverandto demon-
stratethesortsof analyticapproachethatcanaidin suchasearchA firstindication
thatthe strategiedit for one environmentendto differ from thosefit for another
is given by the Venndiagramin Figure 12 which demonstrateghat of the 93 elite
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Orthodox Flat Odor Lethal

2 1

Figure 12. Two elite strategiesarosein both the Orthodox and Flat environments.The
remainingstrategiegreuniqueto the environmenin which theyevolved.

strategiefound throughevolutionarysearchonly two occurredin morethanone
environment.

How do the elite strategieswithin one environmentresembleeachother, and
how do they differ from thosefound in different rewardregimes?The setof elite
Orthodoxstrategiess heterogeneoum thatmanycuesfeatureacrosshe strategy
set,andthereis little consensusegardingwhich cuesare usefuland which are
not (Figure 13). In contrast,the otherthreesetsof elite strategieseachfeaturea
smallernumberof cues,andexhibit a higherdegreeof consensusegardingwhich
cuesare important. Furthermore eachindividual elite strategyin the Odor and
Lethalenvironmentgendsto involve a slightly but significantly greatemumberof
cuesthanelite strategiedound for the othertwo environmentgseeFigure14).

In combination,theseresults suggestthat as the significancestructureof a
decisionenvironmentbecomesncreasinglyheterogeneous,e., the differencein
significancebetweendecisionitemsincreasesappropriatestrategiedecomein-
creasinglyhomogeneouandlessfrugalin cueuse.While thesetof elite strategies
for the Orthodoxenvironmenis wide andshallow,thoseof the LethalandOdoren-
vironmentsarenarrowanddeep.This phenomenoiis reminiscenof findingscon-
cerningthe differencesbetweemoviceandexpertdecisionmakers While novices
tendto pursuea variety of strategiesandasa group may attendto manydifferent
sourcesof potentially relevantinformation, expertsare lessvariablein their ap-
proachto a problem,typically usingjust thosefew specificcueswhich are most
appropriateo the decisionproblemat hand(Shanteaul992).

Theparticularcueswhich featurein elite strategiegor the MushroomProblem
canberegardedasfalling into threegroups.First, a few high validity cues(e.qg.,
odor andbruises)showup in nearly every elite strategy,regardlessf which en-
vironmentthe strategyhasadaptedo. Seconda setof auxiliary cues(e.g.,stalk
shapeand gill-spacing) tend to featurein many of the elite strategieswithin a
particular environment,but do not featurestrongly in alternativeenvironments.
Third, the remainingutilized cuestendto be idiosyncraticto particularstrategies
within particularenvironmentslt is clearthat attendingto high validity cueswill
beausefulpartof mostanydecisionstrategyandthis observatiorcanaccountfor
thosecuesthatareutilized frequentlyacrossall environmentsHowever,cuesare
not alwaysutilized in proportionto their validity, evenwithin the Orthodoxenvi-
ronment.Reasonablaccuratecuesmay be utilized only vary rarely. For example,
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Figure 13. Thepercentagef elite strategiesvhich involve a particularcuein eachof thefour environmentsested Notice thata coregroupof high validity
cuesareattendedo by manyelite strategiesegardles®f environment(tall barsat left), while a numberof cuesareattendedo by many strategieswithin

specificenvironmentgtall barstowardright), andremainingcuesmay be attendedo by individual strategiesvithin anenvironmenishortbars).
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Figure 14. The meannumberof cuesinvolved in the elite strategiefrom eachof the four
environment®xplored.This measurdliffers significantlyacrosshe four conditions(x 2-test,
p < 0.001).Whilst neitherOrthodoxand Flat, nor Odor and Lethal differ from one another
(x2-test, p < 0.5), togetherOrthodox collapsedwith Flat differ significantly from Odor
collapsedwith Lethal (x2-test,p < 0.0001).

gill-color, which is rankedfifth in termsof validity, is neverinvolved in any elite
strategyin any environments.

Similarly, whatmarksparticularcuesasappropriateo particularenvironments
canbe hardto trace.The spore-print-colorhabitat,and stalk-surface-below-ring
cuesare presentin many of the elite strategiesevolved within the Lethal envi-
ronment.However,thesecuessharefew featureswhich can explaintheir utility.
They are mid-rankingin termsof validity. Although the stalk-surface-blow-ring
cueenjoysalow Missrate,which giventhesignificancestructureof thethe Lethal
environmentwould appearto be crucial to the utility of cues,the othertwo are
unremarkablen this respectHowever,spore-print-colorandhabitatdo enjoy low
ratesof FalseAlarms.How arewe to explainthis curiouschoiceof cues?

Giventhatno cueperfectlypredictsedibility acrosgheentiresetof mushrooms,
no cue caninitially be usedby a lexicographicstrategyto identify edible mush-
roomswithout error. Sincethe consumptionof a poisonousmushroomis fatal in
the Lethal environmenteverysuccessfustrategytheremustproceedby rejecting
subsetof mushroomson the basisof cueswhich tendto makecorrectrejections
andfew false alarms.It is in this respectthat spore-print-colorand habitat (and
odor andgill-size) excel, allowing a strategyto confidentlyrejectmushroomsn
the knowledgethatthoseunrejectedwill for the mostpartbe edible.A successful
strategywill useearly cuesof this kind to filter out poisonousmushroomssuch
thatthoseremainingcanbe split into definitely edible or possiblypoisonousby a
subsequentue(e.g.,stalk-surface-below-ring).
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However,this ratherinvolved explanationcannotenableusto statein advance
which particularcueswill beemployedwithin elite Lethalstrategiesbut merelyto
offer a post-hocanalysisof successfuktrategiesEvenin this respecthe explan-
atory strategyis imperfectsinceit cannotaccountfor why alternativecueswere
not utilized in placeof thosethat were.For example thereexist cueswith lower
false alarm ratesthan spore-print-colorand habitatwhich were not employedto
anygreatdegree Why werethesecueseschewed?

In theOdorandFlatenvironmentsthedistributionof cueusageas evenharderto
understandGill-spacing,a popularcuein the Odorenvironmentjs unremarkable
savethatit enjoysalow missrate.However thereis little indicationthatmissesare
morecrucial in the Odor environmentthanin the Flat environmentfor instance,
wherethe gill-spacingis neverutilized by anelite strategy.

The reasonfor the difficulty we experiencen predicting and explaining the
successfutueorderingsstemsfrom the propertiesof lexicographicstrategiesand
our relianceon measure®f cueperformanceaderivedfrom their applicationto the
entirespaceof decisions A strategy’shighestrankedcuewill be consultedin all
decisionsHowever,sincethis first cuemay sometimesuggest courseof action
(i.e., eatingor rejecting) other than checkingthe value of the next cue, this next
cuewill only figurein a subsetf the decisionmadeby a strategy.Similarly, the
third cuewill beconsultedor asubsef this subset— a subsubsebf encountered
mushrooms— and so on. As a result, characteristicf a cue which havebeen
calculatecacrosghewholeenvironmentevenif theysuitablyaccommodatsigni-
ficanceandfrequencystructurewill tendto becomdessandlessusefulthedeeper
into alexicographicstrategythe cueis placed.

Figurel5demonstratethis problemby depictingthedirectionin which cuesat
eachrankin alexicographicstrategytendto be utilized. Recallthatdependingon
the stoppingrule employedin conjunctionwith a cue,its presencer absencean
bethe promptfor eitherpositive (eat),negative(reject)or neutral(checknextcue)
behavior.Rulescanbe divided into thosewhich tendto considerthe presencef a
cueto beanindicatorof edibility and/orits absenceo be anindicator of toxicity,
andthosefor which the presencer absencef the cueindicatesthe opposite One
might expectthat since,on averageacrossthe MushroomProblemdataset, the
presencef eachcuetendsto indicateedibility, rulesof the formerkind might be
more useful and hencebetterrepresentedn the setof elite strategiesFigure 15
showsthatthis is indeedthe caseearly in a strategy.Thefirst cueusedby anelite
strategyis alwaysconsultedin conjunctionwith a rule of this expectedpolarity.
However,aswe descendhroughthe ranks,moreandmoreof the cuesbeginto be
associateavith ruleswhich operaten the oppositedirection,until the polarity of a
cueacrosghewhole populationof mushroomseaseso be a predictorof rule use
atall.

Thedivergencebetweerthe performancef a cueoveranentirespaceof prob-
lem items (global validity) andits performanceacrossthe subsetof itemswhich
it actuallyencountersasa consequencef the cuesprecedingt in alexicographic
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ordering(conditionalvalidity) canbe expectedo increasewith therank of a cue,
asmentionedabove.In addition, the rate at which this divergencencreasewith
rank can be expectedo itself increasewith the degreeto which the significance
or frequencystructureof an environmenttendsto focus performanceon fewer
decisionitems. Considerthat in the Orthodox environment,the contribution of
eachindividual succes®r erroron the partof a cueto its validity is equal.In con-
trast,within the Odor environmentthereis a differential contributionof successes
and errorsto global validity. If a particularmushroomis highly nutritious, then
successfutueswill tendto be ableto identify it asedible. The global validities
of eachof thesecueswill be inflated by their ability to correctly identify this
mushroom.However,the conditional validity of only one cue will be increased
by this ability. This is dueto the fact that, in practice,only one cuewill everbe
usedto identify this mushroom.The remainingcueswhich could alsohavemade
this correctidentificationhavemissedout. As a result,their conditionalvalidities
will not reflecttheir global validities, sincewhilst the latter measuretakestheir
performancen everydecisionitem into accounttheformerdoesnot.

This issueclosely parallelsthe problem of model reductionin the statistical
practiceof multiple regressionMany independenvariables(cues)may havehigh
predictive powerwhenfitted first, thatis, exhibit a high global validity. However,
whenthe completemodel(all cues)is fitted, the predictivepowerof eachcontrib-
uting variablewill belessthanthisfirst-fitting measureDiscoveringthe bestsetof
predictorsis a problemwhich cannotbe solvedby consultingglobal measure®f
validity alone.

This problem hasimplications for lexicographicstrategieswhich order their
cuesaccordingto global measure®f validity, as Take The Bestdoes.Their per
formancewill tendto degradein increasinglystructuredenvironments.This is
shownto betruefor the MushroomProblemin Figure16, which depictsthe mean
long-termperformanceof eachsetof elite strategiesn eachenvironmentandthe
performancef alexicographicstrategywith cuesorderedaccordingo their global
validities. This Take-The-Best- likestrategydoesindeedperformadequatelyn the
Orthodoxenvironmentput abysmallyin the threestructuredenvironments.

In addition, Figure 16 demonstratethatthe ability of strategiesevolvedwithin
oneenvironmento performin anothervariesin anintelligible mannerWhilst the
elite strategieevolvedwithin the Orthodox,Flat,andOdorenvironmentgperform
at essentiallythe samelevel within the Orthodoxand Flat environmentsmore of
a differenceis discerniblewithin the Odor andLethal environmentdetweenfor-
eign’ strategiesandthoseindigenousto the environmentWhatthis demonstrates
is thatelite strategiegrom the Orthodox,Flat, and Odor environmentandistin-
guishroughly the samenumbersof poisonousandedible mushroomghencetheir
similar performancen the Orthodox environment);their performancediffers in
exactlywhich mushroomsre correctly dealtwith andwhich areincorrectly dealt
with (hencetheir varying performancen the Odor environment).Elite strategies
evolvedwithin the Odor environmentare lesslikely to makeerrorswhenfaced
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with mushroomswhich are significantin their own environmentwhereaghe er
rors madeby elite Orthodoxand Flat strategiesare distributedover the spaceof
mushroomsvith no concernfor theirimpactin the Odorenvironment.

Onepossibleexplanationfor the differencebetweemovicesandexpertsnoted
earlierstemsfrom theseobservationslf novicesdo not appreciatahe underlying
significancestructureof adomain,butexpertsdo, onewould expecthatin addition
to novicesperhapsexhibiting alower level of overall performancetheir patternof
successeanderrorswould not matchthat of expertswho aremorelikely to gain
their performancdrom correctlydealingwith problemswhich they considerto be
importantand/orfrequent.

In the Lethal environmentthe differencebetweenwell-adaptedstrategiesand
interlopersis mostevident. This resultsfrom the foreign algorithms’tendencyto
toleratea few misses,since their effects can be compensatedor by an associ-
atedincreasednumberof hits. In the Lethal environmentthis strategyis clearly
maladaptive.

The Take-The-Best-likestrategyachievesits low level of performancean the
Lethal environmentby rejectingevery mushroomin favor of the alternativefood
source.lts conservatisnor risk aversionstemsfrom the fact that sinceno single
cueis capableof makingerror-freerecommendationef edibility acrosghewhole
spaceof mushroomsanderrorsof this kind arelethal, everycueis bestusedto re-
jectmushroomgscoringon averaged.18ratherthannegativeinfinity). As aresult
everycueis rankedequallyandthe absenc®f anycueis takento bereasorenough
to rejectany mushroom.Sinceeachmushroomwill lack at leastone cue, every
mushroomis eventuallyrejectedby this strategy.(Similarly, within the Flat and
Odorenvironmentghis strategyusesthe presencef any cueasevidencen favor
of eatinga mushroom sinceindividually eachcue, acrossthe entire population,
would bestbeemployedasjust suchevidence As aresult,all mushroomsreeaten
in thesetwo environmentandagainroughly chanceperformances achieved.)

The approachof the elite Lethal strategiedalls somewherebetweenthis ex-
tremerisk aversionand the blasé attitude to missesexhibited by elite foreign
strategiesAs discussedbove,by usinginitial cuesto excludeparticularsetsof
mostly toxic mushroomseglite Lethal strategiesare able to use subsequentues
to accuratelydistinguishedible mushroomsrom the remainderlin this way they
achievearemarkablycompetenperformancepn averagevrongly rejecting(false-
alarming)onein 10 edible mushroomsandwrongly accepting(missing)no pois-
oNnousones.

4.4, CONCLUDING THOUGHTSON SIGNIFICANCE STRUCTURE

Using an artificial foragingtaskwe havedemonstratedhat manipulatingthe sig-
nificancestructureof a decisionproblemcanhaveimportantimplicationsfor the
succes®f decision-makinglgorithms We haveshownthatin orderto understand
the structureand performanceof decisionmakersin structuredenvironmentsan
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appreciationof this structureis necessarySignificancestructurewill impacton
theperformancef strategiesn complexways.Specifically,usingglobalmeasures
of a cue’s performancewill tendto becomemisleadingas environmentstructure
increaseshecausehe disproportionateontributionof a smallnumberof problem
itemsto a cue’seffective performancewill causesuchglobal measure®f a cue’s
utility to deviatefrom the effectiveutility of acuewithin aparticularstrategy.This
was demonstratedor lexicographiccue orderings.Similar lessonsare likely to
applyto alternativedecisionheuristics.

5. Overall Conclusions

Ratherthanconceivingof decision-makinguccesasequivalentto somegeneral-
purposemeasureof accuracythe relevantmeasuras onewhich capturesghe ex-
tentto which a mechanisncopeswith its environmentmeetingthe goalsof the
decision-makingagent.Sucha measurenusttakeinto accounthe structureof the
agent’senvironmentjncluding both the environment’sfrequencystructureandits
significancestructure.Employingthis ecologically motivatedform of assessment
leadsto anewvision of whatconstitutesagooddecisionmakingalgorithm— sac-
rificing traditional notionsof accuracyandgeneralitycanrevealthe advantageof
heuristicshatevidenceanincreaseability to copewith specificrealenvironments
despitetheir failure to meetinternalistcriteriaof rationality.

Notes

1Half rankswere employedso that cuescould mutateto fall in betweentwo previouslyadjacently
rankedcues.After reproduction rankswere renormalizedso that they were againconsecutiven-
tegers.
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	either every possible test item is presented once, or a uniform random sample of possible test items is presented, will also fail to capture the underlying structure of the problem, and therefore will misjudge any decision-making mechanism adapted to that structure. 

	Assessing each professor on a representative or ‘natural’ sample (Brunswik, 1955) of test items is the only way to reasonably decide between them. This approach to assessment and the role of environmental considerations derives from an ecological perspective on rationality which itself follows from the evolutionary biology considerations with which this paper opened. In the next section we present the foundations of this notion of ecological rationality, before turning to speciﬁc examples of frequency struc
	-

	2. Ecological Rationality 
	Consider two contrasting assumptions about how best to conceive of cognitive mechanisms. The ﬁrst stems from an observation about origins. 
	• 
	• 
	• 
	Assumption: processes of natural and cultural evolution (sometimes via the lifetime learning fashioned by these processes) have tailored the mind to ﬁt the demands and structure of its environment. Behavior must be adaptive, i.e., suited to its proper environment, to be successful. 


	This assumption invokes a natural process (evolution) and an externalist criterion of success (the environment). It has a direct implication. 
	• 
	• 
	• 
	Implication: the assessment of candidate cognitive mechanisms must be sensitive to facts concerning environment structure. 
	-



	The second conception of cognitive mechanisms considers them to approximate general-purpose, optimal (and ultimately mythical) devices. It is thus an assumption about goals. 
	-

	• 
	• 
	• 
	Assumption: minds are best understood as approximating a Laplacean su-perintelligence (Laplace, 1951), which will, by deﬁnition, achieve general-purpose, optimal performance in any situation, no matter how rare; for any price, no matter how costly; and for any reward, no matter how meager. 


	This assumption invokes an ideal, and implies internalist criteria for success. 
	• 
	• 
	• 
	Implication: general purpose performance cannot, by deﬁnition, rely upon assumptions about the problem to be faced, hence the behavior of candidate cognitive mechanisms should conform to internalist rational criteria, e.g., coherence, transitivity, etc., since it is through the adoption of these criteria that a superintelligence will achieve its optimal performance. 
	-



	Whilst this second, classically rational approach to cognition is somewhat of a straw man, the internalist criteria which it promotes are widespread within decision-making psychology and related ﬁelds, taking the form of prescriptive norms; Your Subjective Probabilities Must Sum to Unity! Be Transitive in Your Choices! Be Coherent! Be Consistent in Your Preferences! In contrast, the ﬁrst approach to 
	Whilst this second, classically rational approach to cognition is somewhat of a straw man, the internalist criteria which it promotes are widespread within decision-making psychology and related ﬁelds, taking the form of prescriptive norms; Your Subjective Probabilities Must Sum to Unity! Be Transitive in Your Choices! Be Coherent! Be Consistent in Your Preferences! In contrast, the ﬁrst approach to 
	cognition embraces an ecological perspective on rationality, dispensing with in-ternalist criteria in favor of an externalist performance metric. In the same way in which evolutionary biology assesses the ﬁtness of adaptations in terms of the extent to which they perform the task for which they were selected, ecologically rational reasoning is reasonable to the extent that it is successful within its proper environment. 

	The perspective on cognition afforded by the concept of ecological rationality is a powerful one. Understanding its rationale requires that certain lay terms be given technical meanings. Although space limitations prevent a full account of its derivation, a few of the more pressing issues will be brieﬂy addressed here (readers are directed to Millikan, 1984, for an account of the role of evolution in underwriting the attribution of functions to cognitive mechanisms). 
	ROXIMALITY AND PROXIHOOD 
	2.1. P

	First, the phrase ‘proper environment’ is used here (e.g., in the ﬁrst assumption above) in the same technical sense in which Millikan (1984, 1993) employs the term ‘Normal conditions’ to mean “the conditions to which [a] device ... is biologically adapted” (Millikan, 1984, p. 34). This biological adaptation is ultimately evolutionary, but may also involve learning, as in the case of a mechanism which has evolved to detect mates, but is calibrated through some period of juvenile experience. The nature of a 
	-

	Since our knowledge of past environments will generally be poor, establishing the structure of these environments with the degree of precision necessary in order to predict, in one fell swoop, the adaptations which resulted from them may be hard, if not impossible. However, taking as a working assumption the hypothesis that, whatever these environments were, they have shaped the character of extant cognitive mechanisms allows us to approach cognition and behavior as evidence from which to infer the adaptive
	Since our knowledge of past environments will generally be poor, establishing the structure of these environments with the degree of precision necessary in order to predict, in one fell swoop, the adaptations which resulted from them may be hard, if not impossible. However, taking as a working assumption the hypothesis that, whatever these environments were, they have shaped the character of extant cognitive mechanisms allows us to approach cognition and behavior as evidence from which to infer the adaptive
	-

	through a similar cycle, repeatedly revising the nature of a decision problem until the optimal solution to this problem matches the observed performance of the natural decision makers they are interested in. 
	-


	Second, in using terms such as ‘success’ and ‘task’ when describing the performance of a natural mechanism, we are eliding an important dimension. The manner in which these terms should be interpreted depends on whether one is concerned with explanations which are biologically or more . Whilst ultimately every biological adaptation has been selected for the task of effecting its own reproduction, with appropriate caveats, organisms and the organs they contain can also be considered to face more proximate ad
	-
	ultimate 
	proximate
	-

	However, establishing a proxihood relationship between some measure of successful reasoning and ultimate ﬁtness is not straightforward. For example, the capture of accurate information is often considered to be a good measure of reasoning success (e.g., Oaksford and Chater, 1994, 1996, but see also Klauer, 1999). In his model of animal communication, Grafen (1990) equates the success of a choosy peahen with her accuracy in capturing the mate value of her suitors. One might expect that to the extent that a r
	-
	-
	-

	For example, a decision-making mechanism used by a peahen to judge the quality of peacocks may provide equally accurate assessments in two cases, yet if the ﬁrst case involves a poor quality suitor and the second a high quality suitor, the value of these two pieces of equally accurate information will differ greatly. The ﬁrst assessment allows the peahen to conﬁdently reject a poor suitor, avoiding the costly mistake of making a long-term investment with a poor-quality mate. In contrast, the second assessme
	-

	These examples highlight the fact that it is the behavior which results from an organism’s reasoning rather than the reasoning itself which is the locus of selective pressure. Whilst accurate and error-free reasoning is clearly typically a 
	These examples highlight the fact that it is the behavior which results from an organism’s reasoning rather than the reasoning itself which is the locus of selective pressure. Whilst accurate and error-free reasoning is clearly typically a 
	conduit leading to adaptive behavior, it does not follow that ‘irrational’ reasoning must have negative consequences for the success of an organism’s behavior. As we move along the explanatory dimension from explanations of decision-making behavior in terms of some ultimate goal (reproduction) to explanations in terms of increasingly proximate goals (successful decision making of some kind) we do not ever reach a legitimate explanation of an organism’s behavior in terms of achieving the consistency, coheren
	-
	necessarily 


	For instance, in order to meet the criteria of classical rationality, one’s preferences must be transitive, that is, if one prefers A over B, and B over C, one must prefer A over C to remain rational. Reinforcement training of various animals demonstrates that they spontaneously develop novel transitive preferences when trained to make pairwise selections between items with adjacent ranks on some arbitrary scale (Delius and Siemann, 1998). That is, when trained to prefer A over B, B over C, C over D and D o
	-
	-
	exaptation 
	ad
	-
	aptation
	per se
	intransitivity 

	PTIMALITY AND ANALYSIS 
	2.2. O

	Friends of classical rational norms will respond at this point that these norms were never intended as prescriptive rules, but as descriptive tools. Since optimal performance will be achieved by an agent following the prescriptions of classical rationality, they serve a useful purpose in providing the means to calculate a benchmark against which natural performance may be measured. Whilst we as scientists can calculate this benchmark, there is no claim that cognitive mechanisms perform 
	Friends of classical rational norms will respond at this point that these norms were never intended as prescriptive rules, but as descriptive tools. Since optimal performance will be achieved by an agent following the prescriptions of classical rationality, they serve a useful purpose in providing the means to calculate a benchmark against which natural performance may be measured. Whilst we as scientists can calculate this benchmark, there is no claim that cognitive mechanisms perform 
	-

	any such calculation. The behavior generated by a rational cognitive mechanism is, however, expected to be well described, or at least approximated, by such optimal models. 

	We have no objection to this use of optimality modelling. However, it must be pointed out that from this perspective, the discovery that human reasoning fails to meet the internalist criteria of rationality in some situation (whether it be experimental or naturally occurring) should not necessarily be the cause for concern that it has appeared to be within the judgement and decision-making literature (e.g., Kahneman et al., 1982). If internalist rational criteria were never expected to be by cognitive mecha
	-
	im
	-
	plemented 

	Indeed, a tradition exists within behavioral ecology which treats experimental results not as revelatory of an animal’s rationality, but as indicative of its evolutionary history. For example, the ﬁeld of optimal foraging theory (Stephens and Krebs, 1986) experimentally assesses the foraging behavior of various species in an attempt to discover not whether they are smart or stupid, or rational or irrational, but what the selective pressures on foraging ability must historically have been for these species, 
	-

	The contrast between the approach of behavioral ecologists and that of decision-making psychologists is crystalized in their response to the possibility of ‘inappropriate’ probability matching in animals and humans (Goodie et al., 1999). The probability matching phenomenon is most straightforwardly presented in a case in which two sites which vary in the rate at which they yield food are attended to in proportion to these yields. Maximizing the consumption of food would be achieved by attending solely to th
	-
	-
	-

	ATIONAL SYNTHESIS 
	2.3. R

	Furthermore, although cognitive mechanisms can be expected to optimal solutions to the problems they have been adapted to, we cannot assume that they are also built from approximately rational building blocks. Once we have set aside optimality theories as a means to derive the contents of organisms’ heads, it is difﬁcult to see immediately what assumptions are justiﬁed when postulating the mechanisms which underpin adaptive behavior. An example from the study of vision highlights this problem. 
	approximate 
	-

	David Marr (1982) and J. J. Gibson (1979) developed contrasting approaches to solving the problem of how animals achieve visual perception. Marr’s computational approach yielded the pipeline model, comprising a series of modules each charged with performing a subpart of the entire task. Each subpart was considered by Marr to be the logical requirement of a system able to form a model of the world around it on the basis of an impoverished two-dimensional array of intensity values (i.e., light falling on a re
	-

	However, whilst Marr’s system was buildable and hence testable, Gibson’s theory offered almost no clues as to what might constitute the subparts of visual systems. Alluding to ‘resonating structures’ did nothing to operationalize his theory, which suffered as a result. For our present purposes, what is interesting about this example is that Gibson’s ecological considerations did not directly suggest candidate mechanisms in the same way that Marr’s computational approach did. Without ﬁrst principles from whi
	-
	-

	In Marr’s approach we can glean a clue as to a way forward. Although the processes involved in the pipeline were considered to be the logical precursors to establishing a three-dimensional model of the system’s surroundings which could be passed to a suitable spatial reasoning system, Marr did not derive the structure of the pipeline entirely from ﬁrst principles. Rather, several important empirical results from the neurobiology of vision (e.g., Hubel and Wiesel, 1959) inspired the design of some of the bui
	-
	-

	More generally, evolutionary processes can be expected to build complex cognitive as well as perceptual systems from combinations of building blocks, themselves the adaptive result of selective pressures. As such we should conceive of cognitive innards as assemblies of limited cognitive subparts, tinkered with and reassembled by mutation and selection until they ﬁt the environment to which evolution has adapted them. By using empirical evidence from the study of adults, children and other species (e.g., Cum
	-
	-

	For example, the recognition heuristic (Goldstein and Gigerenzer, 1999) is predicated on a fundamental psychological phenomenon, recognition memory. This phenomenon has been well studied by psychologists and animal behavior researchers. It clearly subserves much of our everyday behavior. The recognition heuristic utilizes recognition memory to guide decision-making behavior by exploiting the fact that recognition tends not to be randomly distributed across possible entities, but is typically concentrated on
	-
	-

	This process of , the recombination of empirically validated cognitive building blocks, has a counterpart in the ﬁeld of behavior-based robotics (Brooks, 1991a,b). Increasingly, roboticists interested in building intelligent control systems are coming to realize that problems which appear intractable from the perspective of control theory can be tackled effectively by assembling networks of competing and cooperating behavioral modules. Rather than providing this system with some governing module responsible
	rational synthesis
	-

	In addition, roboticists interested in using robotic systems to model natural systems have discovered that building robots from empirically validated building blocks can lead to new and interesting theories of animal behavior. Webb (1994, 1996) reports the use of a robot cricket to demonstrate that the phono-taxis achieved by natural female crickets when they approach calling males can be achieved with practically no cognitive mechanism at all, through relying on the acoustic properties of the cricket’s ear
	-

	A repeated ﬁnding within these related ﬁelds is that complex adaptive behavior can arise from the interaction between simple mechanisms and their environment. This observation formed the basis for Valentino Braitenberg’s (1984) synthetic psychology, the use of artiﬁcially constructed systems (in this case hypothetical ones) to explore the minimal properties required of systems before various intentional attitudes (fears, desires, beliefs, etc.) are attributable to them. The rational synthesis we employ invo
	-
	-
	-

	HE THREAT OF EXPLOITATION 
	2.4. T

	Our concern with the explanatory role of environment structure in accounting for the performance of a candidate cognitive mechanism has lead us to reject inter-nalist rational criteria as unnecessary for such explanations. For example, what use is transitivity across all choices a cognitive mechanism could ever be expected to make, for instance, if this transitivity is achieved at the expense of adequate response time on a few crucial choices? Might it not be better to sacriﬁce this property within a set of
	Yet the employment of internalist rational criteria in the judgement and decision-making literature is commonplace. Why is this the case? One answer is that if the domain to which a cognitive mechanism is expected to apply is unstructured, as it is by deﬁnition for the Laplacean Superintelligence, and as is often implied by the use of a ﬂat accuracy performance metric, then environmental considerations will appear superﬂuous. If success over here is just as good as success over there, then general performan
	Whilst an organism which fails to adhere to some internalist maxim exposes itself to exploitation in the form of an appropriate money pump or Dutch book (Schick, 1986), for example, if no such exploitatory device exists within the organism’s environment, or if the losses due to exploitation are more than made up for by the gains made in other situations, then there is no force to the internalist exhortations. In contrast, if there does exist an exploitatory entity leeching the irrational organism’s utility 
	Whilst an organism which fails to adhere to some internalist maxim exposes itself to exploitation in the form of an appropriate money pump or Dutch book (Schick, 1986), for example, if no such exploitatory device exists within the organism’s environment, or if the losses due to exploitation are more than made up for by the gains made in other situations, then there is no force to the internalist exhortations. In contrast, if there does exist an exploitatory entity leeching the irrational organism’s utility 
	-
	-

	demonstrate its irrationality. In this instance, the organism will be irrational by the lights of externalist ecological considerations — it will be unﬁt. 

	UMMARY 
	2.5. S

	To recapitulate, since organisms are adapted to ﬁt their environment by selective pressures, behaviors and the mechanisms which produce them are only intelligible . Cognitive mechanisms are bespoke mechanisms, tailored to ﬁt particular circumstances, they are ‘made to measure’. Whilst there may be general trends in dress-making or tailoring (i.e., preference for economy, goodness of ﬁt, quality of material, etc.), these are mere trends, not laws or truths. In the same way that opulent, wasteful, ill-ﬁtting,
	in context
	apriori 
	-
	structured 

	In the remainder of the paper we will explore two important kinds of environment structure which are well-deﬁned and hence measurable. Frequency structure describes the relative prevalence of different decision items within a decision domain. Signiﬁcance structure describes the relative importance of different decision items within a decision domain. Each class of structure will be explored through manipulating the structure of an artiﬁcial decision problem and observing the impact this manipulation makes o
	-
	-
	-
	-

	3. Frequency Structure 
	We deﬁne the frequency structure of a decision-maker’s environment as the relative frequency with which each test item is encountered by the decision maker. A ﬂat frequency structure implies that no test item is more likely to be encountered than any other. In contrast, a skewed frequency structure implies that some items are more likely to be encountered than others. 
	HE GERMAN CITIES PROBLEM 
	3.1. T

	Here we employ an arbitrary data set (ﬁrst reported by Gigerenzer et al., 1991) as an arena in which to explore the effects of varying frequency structure. The German Cities Problem is an inference task concerning the population sizes of a 
	Figure
	Each city either possesses (+) or does not possess (...) each of nine binary cues. Cities in possession of any cue tend to have a larger population size than cities lacking that cue. 
	Figure 1. 

	set of German cities. The task is to judge which is the larger of a pair of German cities. The cities involved are the 83 largest in Germany (all cities with population above 100 000 inhabitants in 1988). The information upon which the judgement must be based consists of nine binary cues (see Figure 1), for instance, whether the city has a soccer team in the top league of the Bundesliga (the German football league). 
	This task has previously been used as an inference problem with which to assess the performance of a range of decision-making heuristics (Gigerenzer et al., 1991; Gigerenzer and Goldstein, 1996, 1999; Hertwig, Hoffrage and Martignon, 1999). However, this previous research has proceeded with no attention to frequency structure, assuming that each comparison between a pair of cities occurs with equal frequency and thus contributes equally to a measure of decision-making performance. 
	-
	-

	Gigerenzer and Goldstein (1996) report that the recognition rates for these cities (i.e., the proportion of people claiming to recognize each city) increases with population size. On this basis we might assume that the actual frequency structure of this pairwise comparison task (if people encounter this problem at all) is not ﬂat, but that high population cities tend to be reasoned about more frequently than low population cities. This is clearly one manner in which the German Cities Problem environment cou
	-

	(1a) 
	(1a) 
	(1a) 
	Product Skew: the likelihood that a pair of cities will be encountered by a decision-maker is proportional to the of the city population sizes. 
	product 


	(1b) 
	(1b) 
	Reciprocal Skew: this is the complement of Product Skew, the frequency with which a pair of cities will be encountered being proportional to the of the city population sizes. 
	inversely 
	product 


	(2a) 
	(2a) 
	Similarity Skew: the likelihood that a pair of cities will be encountered by a decision-maker is proportional to the difference between the city population sizes. 
	inversely 


	(2b) 
	(2b) 
	Difference Skew: this is the complement of Similarity Skew, the frequency with which a pair of cities will be encountered being proportional to the between the city population sizes. 
	difference 



	Whilst we do not know whether one or any of these frequency structures characterizes the distribution of city-size comparisons that people might naturally face, these classes of skew have been chosen because each is probably representative of natural problems. For example, if one encounters entities (cities) at a rate proportional to their value on some dimension (population size), then Product Skew will describe the frequency structure of pairwise comparisons between encountered entities. Similarly, if com
	-
	some 

	For each class of frequency structure, we explore two degrees of skewness. 
	(1) 
	(1) 
	(1) 
	Mild: the most frequent city pair occurs 10 times more often than the least frequent. 

	(2) 
	(2) 
	Extreme: the most frequent city pair occurs 100 times more often than the least frequent. 


	In each environment the least frequent city pair occurs 10 times. For each environment, the proportion of comparisons in which each individual city takes part is shown in Figure 2. 
	-

	It is important to note that, rather than being interested in the problem of comparing city sizes itself, we are concerned with the inﬂuence of frequency structure on decision problems in general (but to make our points we will concentrate in depth on this one particular example). Indeed the German Cities Problem is one with perhaps little intrinsic import, serving here as a model, rather than an object of enquiry in its own right. 
	-

	Figure
	The distribution of test pairs across city size is shown for each of the four frequency-skewed environments in comparison to the default ﬂat environment. The 83 German cities are arranged on the -axis in order of increasing population size. The proportion of test pairs featuring each city is plotted on the -axis. 
	Figure 2. 
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	HE DECISION ALGORITHMS 
	3.2. T

	To explore the impact of environmental frequency structure on the structure and performance of decision mechanisms, we chose a small set of such mechanisms for comparison. The four mechanisms we use all make their choices on the basis of some set of the available cues, but they vary in the exact number of cues used and in the complexity of cue processing. The most sophisticated algorithm is multiple linear regression, which ﬁrst computes the optimal weights for weighting and combining (summing) all of the a
	-

	The second algorithm, called Dawes’s Rule, similarly uses all of the available cues, but it processes them in a rather less sophisticated fashion. Initially, the algorithm must compute the direction of association between each cue and the criterion value — that is, does the cue on average indicate a higher or a lower criterion value (so for example, does having a Bundesliga soccer team indicate a higher city size in over half of the city comparisons?). Then, to make each individual pair comparison, the numb
	-

	The last two algorithms take a different approach to decision making. Rather than combining all of the available cues in some manner, they consider cues one at a time, sequentially, until the ﬁrst cue that enables a decision to be made is found. This decisive cue will be the ﬁrst which discriminates between the two objects being compared, i.e., one object possesses the cue whilst the other does not. If possession of the cue is positively correlated with the criterion, the object in possession of the cue is 
	one-reason decision making 

	In particular, here we use the Take The Best algorithm, which orders cues by their validity — that is, by how often they indicate the larger criterion value in a pair of discriminated objects — so that the best cues are considered ﬁrst. Take The Best is thus sensitive to the direction strength with which cues indicate the criterion values, but its sensitivity to cue strength only extends to their ranking, not to their precise differences in strength. (Hence, the strength or validity of two cues could change
	and 

	We also compare the effectiveness of an even simpler one-reason decision algorithm, the Minimalist heuristic, which examines cues in a random order, stopping when it stumbles upon the ﬁrst cue which discriminates between the objects. Minimalist is thus not sensitive to cue strength at all, but only to what direction the cue points with respect to the criterion (that is, whether it indicates higher or lower criterion values, or in other words, whether its validity is above or below 0.5). And yet despite its 
	-
	-

	HEIR PERFORMANCE 
	3.3. T

	Each algorithm was parameterized (e.g., cues ordered or weighted) on the basis of the skewed environment within which their performance was to be assessed. This ensures that each algorithm was appropriately matched to its environment. Each algorithm was then made to judge which was the larger of every possible pair of cities and their average performance across the entire set of pairs was computed. However, some pairs of cities were presented multiple times according to the frequency structure of the enviro
	-

	Whilst the performance of each algorithm relative to the others remained stable across environments, the absolute performance (i) increased with increasing Product Skew, (ii) increased with increasing Difference Skew, (iii) decreased with increasing Similarity Skew, and (iv) decreased with increasing Reciprocal Skew (Figure 3). It appears reasonable that choosing the larger of two similarly sized cities will be harder than making the same judgements concerning pairs of dissimilar cities, and perhaps that in
	-

	The source of changes in the algorithms’ performances clearly lies in changes in both the predictive validities and the discrimination rates of the cues made available 
	Figure
	The performance of the four simulated algorithms in each of the eight structured environments is plotted in comparison to the default ﬂat environment (middle of each panel). Whilst the relative success of algorithms with respect to each other changes little, their overall performance is dependent on the type and degree of skew exhibited by the environment. 
	Figure 3. 
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	Figure
	Cue Validity, calculated across all test pairs as (number of correct judgements)/(number of test pairs), varies with environment structure. A cue which correctly predicts a frequent test pair enjoys higher validity. Groups of cues respond similarly to changes in frequency structure. 
	Figure 4. 

	Figure
	Discrimination Rate, calculated across all test pairs as (number of discriminations made)/(number of test pairs), also varies with environment structure. A cue which discriminates a frequent test item enjoys a greater discrimination rate. 
	Figure 5. 

	to the algorithms (Figures 4 and 5). Validity is deﬁned as the ratio of the number of correct judgements made by a cue to the total number of judgements made by a cue, whilst discrimination rate is deﬁned as the ratio of the number of judgements made by a cue to the total number of judgements sought from a cue. Some cues respond positively to a certain frequency skew, tending to correctly predict a greater proportion of judgements as those comparisons that the cue discriminates correctly become increasingly
	-
	typology 

	In summary, we have seen that frequency structure affects the performance of decision-making algorithms. Despite algorithms having been conﬁgured to suit each structured environment, systematic differences in their performance were induced by skewing the frequency structure of these environments in particular ways. The general drop in performance induced by Similarity Skew and Reciprocal Skew coupled with the general increase in performance induced by Product Skew and Difference Skew indicate that the forme
	-
	-

	XPLAINING PERFORMANCE IN TERMS OF ENVIRONMENT STRUCTURE 
	3.4. E

	There are several possible explanations for the changes in performance induced by changes in environment structure in this domain, some of which are speciﬁc to the German Cities Problem and some of which are more general. The ﬁrst and most general is that there exist properties inherent to dichotomous-cue pairwise choice problems which imply that particular kinds of frequency structure will be more difﬁcult than others. The second is that underlying properties of the decision criterion of this particular pr
	-

	A combination of these explanations seems most likely to account for the results reported above. However, it is worth noting some points in favor of this ﬁrst explanation. Most importantly, all four decision heuristics responded similarly to the changes in environment structure that we imposed. These heuristics differ in many ways, yet beneﬁt or suffer from the same kinds of environment structure. Furthermore, the effects on performance induced by changes in environment structure occur irrespective of the s
	-
	-

	Figure
	Take The Best utilizes cues in an order determined by their validities. Here the manner in which this cue order changes as the result of frequency structure affecting cue validities is shown for the nine environments. 
	Figure 6. 

	For example, the simplest of the strategies tested, Minimalist, is affected by changes in environmental frequency structure, tracking the performance of the other algorithms (although always at a slight distance), despite it not being sensitive to most of these changes. Recall that Minimalist uses the polarity of each cue to govern its inferences. As such, this strategy treats environments identically unless the polarity of at least one cue differs between them (e.g., a cue which predicted high population s
	For the frequency structures explored here, out of the nine cues in eight skewed environments only ﬁve reversals of predictive validity occurred. Four of these reversals affected the East Germany cue, whilst the remaining one affected the Industrial Belt cue. The two cues which suffer validity reversal have the lowest validity of the nine available, ensuring that their reversal makes little impact on the performance of the algorithm. This is not surprising since the polarity of cues with poor validity will 
	-

	This type of analysis draws attention to the sensitivity of algorithms to changes in their environment. Minimalist and Dawes’s Rule only accommodate changes in the , of cues. Take The Best is only sensitive to changes in cue validity which are large enough to cause changes in the rank order of cues by their validity (see Figure 6). Multiple regression is in principle sensitive to any change in cue 
	This type of analysis draws attention to the sensitivity of algorithms to changes in their environment. Minimalist and Dawes’s Rule only accommodate changes in the , of cues. Take The Best is only sensitive to changes in cue validity which are large enough to cause changes in the rank order of cues by their validity (see Figure 6). Multiple regression is in principle sensitive to any change in cue 
	polarity

	validity. Given these facts, it is understandable that the difference in performance between a sensitive algorithm and a less sensitive algorithm increases with the performance of the former, i.e., the degree to which a sensitive algorithm outstrips its less sensitive competitors increases with the degree to which the sensitive algorithm can exploit the structure of its environment. 
	-


	This can be seen by looking at the difference between the performance of the most sensitive algorithm, multiple regression, and that of the least sensitive, Minimalist, across all nine environments. This difference is impressively positively correlated with the absolute performance of multiple regression (=0.92). That is, multiple regression beneﬁts from its greater sensitivity to environment structure by exploiting this structure to a greater extent. Indeed all six such comparisons between algorithms are c
	-
	r
	r
	-
	r
	−

	It is important to stress at this point that we are considering here only the performance of the four algorithms — that is, how well they can exploit the structure in a particular set of data from a particular environment. (This situation is also described as one in which the data set on which the algorithm is trained is the same as the data set on which the algorithm’s performance is tested.) In this case, the set of data being ﬁtted by the algorithms is the entire frequency-skewed set of all pairs of citi
	ﬁtting 
	-
	generalization 

	How can we test whether the changes in performance induced by our manipulation of frequency structure are not due to some facts peculiar to German Cities (and other related environments)? One clue comes from Figure 2, where it appears that Product and Difference Skew have qualitatively analogous affects on the frequency with which different cities appear in test items. Similarly, Reciprocal and Similarity Skew have comparable effects on these distributions. This could presumably account for the similarity i
	-
	-

	The similarity between Product- and Difference-Skewed environments, and between Reciprocal-and Similarity-Skewed environments, stems from the underlying structure of the distribution of population size across German Cities. Since the population of German Cities decreases roughly exponentially with rank, forming a so-called J-shaped distribution (see Hertwig et al., 1999), the largest cities (which feature most frequently in the Product-Skewed environments) are also very different from most of the other citi
	The similarity between Product- and Difference-Skewed environments, and between Reciprocal-and Similarity-Skewed environments, stems from the underlying structure of the distribution of population size across German Cities. Since the population of German Cities decreases roughly exponentially with rank, forming a so-called J-shaped distribution (see Hertwig et al., 1999), the largest cities (which feature most frequently in the Product-Skewed environments) are also very different from most of the other citi
	-
	-
	-

	in the Difference-Skewed environments. Similarly, the many small cities are similar in size to each other and hence are disproportionately represented in both the Reciprocal-Skewed and Similarity-Skewed environments. (If the frequency structure of each environment had been determined using the rank, rather than the real value, of each cities population size, these similarities would be markedly reduced since they rely essentially on the clustering of smaller cities and the isolation of larger cities along t
	-
	-


	Although pairs of the environments do indeed appear alike in their gross characteristics, Product and Difference Skew differ considerably in the extent to which the most common pairs are over-represented in comparison to the least common pairs. Furthermore, Reciprocal and Similarity Skew differ in that the latter features particular mid-sized cities far more frequently than the former. For example, in the extreme Similarity-Skewed environment, Münster and Mönchengladbach, cities which differ in population s
	-
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	In line with the third explanation for environmental impacts on performance given at the beginning of this section, it could be the case that the arbitrary set of nine cues upon which the algorithms must base their judgements favor certain city pairs over others. Perhaps we have provided no cues which correctly discriminate between small cities, or between similarly sized cities. This type of explanation draws attention to the fact that in structured environments, not just the predictive validity of a cue, 
	-
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	The space required to plot each of these possible cues is prohibitive, but we can expect to approximate the qualitative results by carrying out the same process for a toy problem of ﬁve objects, and hence 2= 32 possible cues (Figure 7). There are 4 + 3 + 2 + 1 = 10 possible pairwise comparisons between ﬁve objects (ignoring order). In order to represent the manner in which a cue’s performance is distributed across this space of possible comparisons we plot the lower left half of a 5 5matrix containing the o
	5 
	× 
	-

	Figure
	There are 32 possible ways in which a binary cue can apply to ﬁve objects, A–E. The order of the objects on the criterion dimension is described by the inequality A>B>C>D>E. Each of the 32 numbered triangles depicts the judgements made between all possible pairs of objects on the basis of the corresponding cue shown in the table above. Judgements may be correct (grey) or incorrect (black); a blank cell indicates that a cue does not discriminate between the pair of cities involved in the judgement. 
	Figure 7. 

	are indexed by the coordinate () with object value on the criterion decreasing with increasing and increasing with increasing . This ensures that cells near the right-angle of the triangle represent comparisons between objects with dissimilar values on the criterion (e.g., A vs. E), whereas cells near the hypotenuse represent comparisons between objects with similar values on the criterion (e.g., B vs. C). Cells in the upper corner represent comparisons between pairs of objects which both have high values o
	x, y
	x 
	y

	The ﬁrst thing to note about the distribution of possible cues is that there are far fewer of them than there are possible ways of coloring the cells of one of the triangles used to represent each cue (i.e., 3) This indicates that the nature of the problem is constraining the kind of cues that are possible. For example it is impossible for one cue to either deal correctly with all possible comparisons or deal incorrectly with all possible comparisons (i.e., no triangle is entirely grey or black). We can see
	10

	However, it is clear that this reasoning does not straightforwardly apply when continuously valued cues are available to an algorithm which is capable of using them. One continuous cue is sufﬁcient to accurately discriminate between all adjacent objects. Furthermore, a discrete cue with possible values is capable of distinguishing between all of the adjacent pairs of objects. A discrete cue with a valency of 2 is able to correctly make half of these pairwise comparisons without incurring error on the remain
	-
	n 
	n 
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	With this understanding of the space of possible cues in hand, we are in a position to assess the representativeness of the cues made available to the algorithms in the German Cities Problem. The set of cues used in this problem were collected from relevant almanacs containing data on German cities (Ulrich Hoffrage and Ralph Hertwig, pers. comm., 1999). As such the cues are a relatively representative sample of the kind of facts people might know about cities. The manner in which correct and incorrect judge
	-
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	Figure
	Judgement distributions for each of the nine cues made available to the decision-making heuristics in the German Cities Problem. Each triangle represents all possible pairs of cities (because pair order is irrelevant, the upper half of each matrix is redundant, and hence omitted). Cities are arranged in order of increasing population size from left to right and top to bottom. Cues are arranged in order of increasing validity in a ﬂat environment. Grey indicates correct inferences, black indicates incorrect 
	Figure 8. 
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	pairwise choice and binary cues. As just argued for the ﬁve-object case, there simply do not exist cues which correctly deal with many comparisons between objects with similar values on the criterion dimension. In order to accurately deal with each comparison along the hypotenuse of the triangle diagrams presented here, 83 binary cues must be consulted. 
	In contrast, the fact that the cues available to the algorithms facing the German Cities Problem do not tend to discriminate amongst small cities, is not a result of some constraint on binary cues. This deﬁciency is due to this set of nine cues being a biased sample of logically possible cues. Is there an explanation for this bias, or must it be attributed to the vagaries of sampling error? There are reasons to believe that the former is most likely. 
	Whilst there may exist cues which discriminate amongst smaller cities, they are unlikely to be recorded in almanacs, which, since larger cities are more interesting to their readers, tend to record facts which are true of large cities, and false of small ones. In addition, these facts are not true of every large city, but tend to be false of almost every small city, ensuring that they tend to discriminate amongst large cities as well as between large cities and small cities, but not to discriminate well amo
	Thus, randomly sampling cues from those made available in the public domain will tend to result in a set of cues which is not representative of the space of possible cues, but which is biased towards those cues suitable to the structure of the problem which they have been selected for. This set of cues will not be able to accommodate a manipulation of environment structure, if this manipulation opposes the natural structure of the problem responsible for their existence in the public domain. In skewing the 
	This argument does not apply solely to the German Cities Problem, but in principle can be generalized to any decision problem. Well adapted decision makers will tend to recognize and attend to cues which are well-suited to the predictive demands of the problem as inﬂuenced by its frequency structure and signiﬁcance structure. This implies that, to the extent that such cues are logically possible, the cues used by such decision makers will tend to discriminate correctly between frequent and/or signiﬁcant pai
	-
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	In concert, the effects outlined above ensure that the structure of the nine cues made available to algorithms in the German Cities Problem favours environments where they are more often called on to choose between pairs of large cities, or between large and small cities (Product and Difference Skew, respectively). For the same reasons, these algorithms will tend to perform poorly when forced to choose more often between small or similarly sized cities (Reciprocal and Similarity Skew, respectively). These g
	In summary, the variation of algorithm performance with environment structure can be traced to several sources. First, some classes of frequency skew are inherently difﬁcult to accommodate due to the nature of binary cues and the pair-
	In summary, the variation of algorithm performance with environment structure can be traced to several sources. First, some classes of frequency skew are inherently difﬁcult to accommodate due to the nature of binary cues and the pair-
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	wise choice paradigm. This argument accounts for the reduced performance on Similarity-Skewed environments. Second, some classes of frequency skew are difﬁcult contingent on the cues available. This argument accounts for the reduced performance on Reciprocal-Skewed environments. Third, some algorithms are more sensitive to environment structure than others and are thus more likely to accommodate particular manipulations. The heuristics assessed here vary in their sensitivity to environment structure, and th
	-
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	-
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	ONCLUDING THOUGHTS ON FEQUENCY STRUCTURE 
	3.5. C

	By employing the German Cities Problem as a toy environment, we have shown that frequency structure impacts on the performance of decision-making algorithms. The character of this impact is complex. The presence of environment structure demands that decision-makers trade off general performance against performance on important subsets of test items. As a result, not only the validity of a cue, but the source of this validity is of importance to decision makers. Cues which gain their validity from frequent t
	Furthermore, environment structure interacts with the necessary and contingent characteristics of a decision problem, and the strengths and weaknesses of a particular algorithm, to inﬂuence the performance of that algorithm. 
	-

	4. Signiﬁcance Structure 
	As well as differing in their relative frequency, naturally occurring problems differ in their relative signiﬁcance. Consider a list of decisions which might be faced on the way to work: Which tie should I wear? Should I walk to the bus stop or ride my bicycle? Which bus should I catch? Is it safe to cross the road? How fast should I walk? How fast is that car approaching? Should I jump left or right? How am I going to make that 9:15 meeting now? 
	Clearly these dilemmas differ along many dimensions; some are leisurely, some pressing; some are conscious, some unconscious; some are casual, some weighty. Here we will consider the effects of variation in the importance or gravity of decision problems on the structure and performance of decision-making mechanisms. 
	-

	There are two ways in which the signiﬁcance structure of a decision problem can be mischaracterized. First, the goal of the decision-maker may be misconceived. For example, doctors may be assessed on the accuracy of their diagnoses when what is signiﬁcant to them is not forming an accurate judgement of what ails a patient, but prescribing measures which will alleviate this ailment. Whilst correct diagnoses are clearly a step towards this goal, they do not constitute it. There may be diagnostic errors which 
	There are two ways in which the signiﬁcance structure of a decision problem can be mischaracterized. First, the goal of the decision-maker may be misconceived. For example, doctors may be assessed on the accuracy of their diagnoses when what is signiﬁcant to them is not forming an accurate judgement of what ails a patient, but prescribing measures which will alleviate this ailment. Whilst correct diagnoses are clearly a step towards this goal, they do not constitute it. There may be diagnostic errors which 
	-

	confounded conditions demand the same treatment (see Connolly, this issue, for discussion along these lines). Similarly, the prescription of an incorrect treatment regime may, nonetheless, sometimes result in a cured patient (e.g., prescribing a course of vitamin supplements, complete rest and avoidance of dairy products, when the correct treatment was merely relaxation). Mischaracterising the aims of the decision maker leads to a misunderstanding of what counts as success and what counts as error. 

	The second, and related, manner in which signiﬁcance structure may be misconstrued is in failing to appreciate that different decision problems differ in their signiﬁcance to the decision maker, i.e., failing to discriminate between inconsequential decisions and those of much greater signiﬁcance. A doctor confronted with what appears to be a case of inﬂuenza faces a decision problem which differs from that of a colleague encountering what appears to be a case of meningitis. Errors in treating such cases wou
	-
	-
	-
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	In general, a problem’s signiﬁcance structure is the manner in which the different decision items which constitute the problem differ in terms of their consequences for the decision maker’s goal. For dichotomous decision problems such as the ones considered here, in which a test item’s signiﬁcance can be operationalized as the difference in value between the two possible outcomes of the decision regarding that item, signiﬁcance structure describes the manner in which this difference varies across the space 
	-
	-
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	HE MUSHROOM PROBLEM 
	4.1. T

	Imagine a fungivorous forager which, throughout its lifetime, encounters mushrooms, one after the other. Whilst some of these mushrooms are good sources of valuable nutrition, others contain damaging toxins. When confronted by a mushroom, the forager must decide whether to eat it, or reject it in favor of a safe but mediocre food source assumed to be ever present in the forager’s environment. The forager must make its decisions on the basis of binary cues which it is sensitive to, and which together describ
	-
	-

	The signiﬁcance of these decisions will vary across the space of mushrooms liable to be encountered by a forager. How will this variation impact on the success of the different foraging strategies that such a forager might employ? In order to answer this question we simulated such a forager, and explored how the perform-
	Figure
	The appearance of each mushroom is characterized by 20 dichotomous cues. The rates of Hits, Misses, False Alarms and correct Rejections have been calculated across the entire set of 8124 mushrooms. Hits are cases in which a cue correctly indicates that a mushroom is edible. Misses are cases in which a cue incorrectly indicates that a poisonous mushroom is edible. False Alarms are cases in which a cue falsely indicates that an edible mushroom is poisonous. Correct Rejections are cases in which a cue correctl
	Figure 9. 
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	ance of various foraging strategies was affected by manipulation of the signiﬁcance structure of the artiﬁcial mushroom environment it inhabited. 
	We utilized Schlimmer’s (1987) database of 8124 different mushrooms from 23 species within the Agaricus and Lepiota families (available from the University of California, Irvine Machine Learning Repository; Blake et al., 1998). Each mushroom was described using 20 binary cues (dichotomized versions of the original data), as shown in Figure 9. Of the 8124 mushrooms, 4208 (51.8%) were classiﬁed as edible, whereas 3916 (48.2%) were classiﬁed as poisonous. The rates at which each cue is able to distinguish pois
	-
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	The signiﬁcance structure of this decision problem can be manipulated by deﬁning different payoff matrices governing a decision maker’s performance. Figure 10 depicts the four signiﬁcance structures we explored. The ﬁrst represents a scheme which assumes no signiﬁcance structure exists. A decision maker receives a point 
	-

	Figure
	Four payoff matrices determining the signiﬁcance structure of the Mushroom Problem. Each cell contains the points awarded for an individual decision. Dashes in the Odor matrix indicate that no mushrooms were present in a particular cell. 
	Figure 10. 

	for each positive response to an edible mushroom and each negative response to a poisonous mushroom, and no points for any other responses. This scheme rewards accurate classiﬁcation and is termed Orthodox since accuracy metrics of this type dominate much of decision-making psychology. A student being tested on his knowledge of mushrooms might be assessed in this way — the student is sent out into the environment with two baskets, one labeled , one labeled . Upon his return, a teacher awards a point for eve
	edible
	poisonous

	This Orthodox signiﬁcance structure treats all successes as equivalent and commensurate, and all errors likewise. However, a forager actually consuming or rejecting mushrooms has not achieved its goals to the same extent by rejecting a poisonous mushroom as by consuming an edible one. Although these are both appropriate behaviors, in the latter case the forager has gained valuable nutrition, in the former it has avoided being poisoned. Similarly, for such a forager, the consequences of the two classes of po
	-
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	The second payoff scheme attempts to capture this signiﬁcance structure to a greater extent through awarding points for eating edible mushrooms, deducting points for eating poisonous mushrooms, and awarding a negligible amount for rejecting mushrooms in favor of the alternative mediocre foodstuff. The payoff 
	The second payoff scheme attempts to capture this signiﬁcance structure to a greater extent through awarding points for eating edible mushrooms, deducting points for eating poisonous mushrooms, and awarding a negligible amount for rejecting mushrooms in favor of the alternative mediocre foodstuff. The payoff 
	matrix is constructed such that eating all mushrooms achieves, on average, the same score as rejecting all mushrooms. This scheme can be considered to offer the forager the choice between a risky, but potentially high value food item (the mushroom) and a safe, but relatively low value food item (the alternative). It is termed Flat, since each poisonous mushroom and each edible mushroom are equivalently poisonous or nutritious. 
	-


	The two environments described so far can be adequately captured by a signal detection paradigm. In varying the points awarded for eating and rejecting mushrooms which are poisonous or edible we have been deﬁning the costs and beneﬁts of the four cells in a signal detection matrix — hits, misses, false alarms and correct rejections. 
	-

	However, signiﬁcance structure can be ﬁner grained than the signal detection picture implies. In the third environment, termed Odor, the value of consuming edible mushrooms and the cost of eating poisonous mushrooms is correlated with their odor. Whilst the fungivore can discriminate between odorous and odorless mushrooms, the signiﬁcance of a decision involving a particular mushroom depends on whether the mushroom smells ‘foul’, ‘ﬁshy’, ‘pungent’, and so forth, that is, on features which are not directly a
	-
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	Furthermore, signiﬁcance structure can sometimes be difﬁcult to capture in the terms of signal detection. For example, in reality poisonous mushrooms may be more dangerous than the deduction of points implies. The fourth environment is identical to the Flat environment save that the consumption of any poisonous mushroom results in the death of the fungivore, that is, an immediate and irreversible assignment of a score of zero points to the forager. This Lethal environment ensures that successes and failures
	-
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	These four environments demonstrate the range of possibilities that a problem’s signiﬁcance structure can cover. Real decision problems can be expected to exhibit signiﬁcance structures which are more complex still than those explored here since neither options, nor the evidence upon which to decide between them, need be binary in nature; further, differing outcomes may not be as easily reducible to a single dimensional of utility. In the next section we assess the effects that the four variations of signiﬁ
	We can make some general predictions regarding the effects of these manipulations. For instance, those algorithms tailored to an inappropriate signiﬁcance structure should tend to be outperformed by those which are appropriately tailored. In addition, algorithms tailored to the Lethal environment should be conservative in 
	-

	Figure
	Each cue is treated in one of seven ways. The presence or absence of a cue can prompt a forager to reject (cross) or accept (tick) a mushroom, or to check the next cue (?). Notice that since, across the entire population of mushrooms, the presence of each cue tends to indicate edibility, high-performance foragers might be expected to utilize rules 5, 6, and 7 more than 1, 2, and 3. Rules 3 and 5 always stop search since they propose a deﬁnite action based on the presence or absence of the cue they apply to.
	Figure 11. 

	their food choice, whilst those tailored to the Flat or Odor environments should tend to make errors within a subset of insigniﬁcant mushrooms in comparison to those algorithms tailored to the Orthodox environment, for whom one error is equivalent to any other. 
	HE ALGORITHMS 
	4.2. T

	Here we explore a class of lexicographic decision algorithms. Like Take The Best, described above, these decision heuristics treat evidence one piece at a time and make a decision based on the ﬁrst piece of evidence to suggest a course of action other than checking for more information, i.e., the ﬁrst piece of information that allows a choice to be made. In this case the evidence is in the form of binary cues which are consulted in some order (tied ranks are possible in which case the tied cues are consulte
	To understand how signiﬁcance structure can interact with the structure of decision mechanisms and affect their performance, we will focus on this example task to ﬁnd and compare strategies which perform well within each of the four environments described above. We cannot assess each member of the class of lexicographic rules since, given that cue ranks may be tied, there are over 20! orderings of cues and each ordering can be governed by 7combinations of stopping rules. To ﬁnd lexicographic algorithms whic
	-
	-
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	The genetic algorithm we used (Goldberg, 1989; Holland, 1975; Mitchell, 1996) started with a population of 1000 randomly generated algorithms and assessed the performance of each on the Mushroom Problem under a particular signiﬁcance 
	The genetic algorithm we used (Goldberg, 1989; Holland, 1975; Mitchell, 1996) started with a population of 1000 randomly generated algorithms and assessed the performance of each on the Mushroom Problem under a particular signiﬁcance 
	structure (i.e., in a particular environment). Each assessment involved the particular algorithm encountering 100 mushrooms drawn at random from the population of 8124, eating or rejecting each mushroom, and gaining or losing points as a result. Once each of the 1000 algorithms was assessed, a new population of 1000 algorithms was generated by allowing the better performing algorithms to ‘reproduce’, that is, to be copied into the next generation. This copying procedure was subject to a small chance of erro
	-
	-
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	As a result of this assessment, reproduction, and mutation cycle, the population of 1000 algorithms became better and better adapted to the problem it faced. Over many thousands of generations performance increased as the algorithms converged on successful orderings of cues and appropriate stopping rules for these cues. 
	In each of the four environments depicted in Figure 10 we assessed 20 independent populations of 1000 algorithms each for 5000 generations of simulated evolution. During reproduction, there was a 1 in 100 chance that each of an algorithm’s parameters might be mutated. Mutations, when they did occur, consisted of (i) a cue’s rank being replaced by a random value drawn from the set {0.5, 1, 1.5...20, 20.5}, (ii) a cue’s stopping rule being replaced by one drawn at random from the seven possible rules, or (iii
	-
	-
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	For each of the four environments, the top ﬁve (0.5%) foragers from each of the 20 populations at generation 5000 were collected, and their long-term mean performance over 10 000 lifetimes (i.e., 1 000 000 mushrooms) was calculated. The best such long-term mean performance was recorded. Algorithms which failed to achieve a long-term mean performance within 5% of this threshold were discarded. 
	Duplicate equivalent strategies were then excluded. Strategies were deemed equivalent if they exhibited the same cue ordering and applied the same stopping rules to these cues, once redundant cues had been removed. Redundant cues were either those associated with stopping rule 4, those which were never consulted because a cue associated with rule 3 or 5 preceded them in the cue order, or those which, over the course of 10 000 lifetimes, although consulted, had never stopped search. The remaining ‘elite’ str
	HE ELITE STRATEGIES 
	4.3. T

	At this point, we will delve into a speciﬁc detailed analysis of the evolved strategies in these environments to see what general principles we can uncover and to demonstrate the sorts of analytic approaches that can aid in such a search. A ﬁrst indication that the strategies ﬁt for one environment tend to differ from those ﬁt for another is given by the Venn diagram in Figure 12 which demonstrates that of the 93 elite 
	-

	Figure
	Two elite strategies arose in both the Orthodox and Flat environments. The remaining strategies are unique to the environment in which they evolved. 
	Figure 12. 

	strategies found through evolutionary search, only two occurred in more than one environment. 
	How do the elite strategies within one environment resemble each other, and how do they differ from those found in different reward regimes? The set of elite Orthodox strategies is heterogeneous in that many cues feature across the strategy set, and there is little consensus regarding which cues are useful and which are not (Figure 13). In contrast, the other three sets of elite strategies each feature a smaller number of cues, and exhibit a higher degree of consensus regarding which cues are important. Fur
	individual 

	In combination, these results suggest that as the signiﬁcance structure of a decision environment becomes increasingly heterogeneous, i.e., the difference in signiﬁcance between decision items increases, appropriate strategies become increasingly homogeneous and less frugal in cue use. While the set of elite strategies for the Orthodox environment is wide and shallow, those of the Lethal and Odor environments are narrow and deep. This phenomenon is reminiscent of ﬁndings concerning the differences between n
	-
	-
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	The particular cues which feature in elite strategies for the Mushroom Problem can be regarded as falling into three groups. First, a few high validity cues (e.g., odor and bruises) show up in nearly every elite strategy, regardless of which environment the strategy has adapted to. Second, a set of auxiliary cues (e.g., stalk shape and gill-spacing) tend to feature in many of the elite strategies within a particular environment, but do not feature strongly in alternative environments. Third, the remaining u
	-
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	532 
	Figure
	The percentage of elite strategies which involve a particular cue in each of the four environments tested. Notice that a core group of high validity cues are attended to by many elite strategies regardless of environment (tall bars at left), while a number of cues are attended to by many strategies within speciﬁc environments (tall bars toward right), and remaining cues may be attended to by individual strategies within an environment (short bars). 
	Figure 13. 

	SETH BULLOCK AND PETER M. TODD 
	Figure
	The mean number of cues involved in the elite strategies from each of the four environments explored. This measure differs signiﬁcantly across the four conditions (-test, < 0.001). Whilst neither Orthodox and Flat, nor Odor and Lethal differ from one another (-test, < 0.5), together Orthodox collapsed with Flat differ signiﬁcantly from Odor collapsed with Lethal (-test, < 0.0001). 
	Figure 14. 
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	gill-color, which is ranked ﬁfth in terms of validity, is never involved in any elite strategy in any environments. 
	Similarly, what marks particular cues as appropriate to particular environments can be hard to trace. The spore-print-color, habitat, and stalk-surface-below-ring cues are present in many of the elite strategies evolved within the Lethal environment. However, these cues share few features which can explain their utility. They are mid-ranking in terms of validity. Although the stalk-surface-blow-ring cue enjoys a low Miss rate, which given the signiﬁcance structure of the the Lethal environment would appear 
	-

	Given that no cue perfectly predicts edibility across the entire set of mushrooms, no cue can initially be used by a lexicographic strategy to identify edible mushrooms without error. Since the consumption of a poisonous mushroom is fatal in the Lethal environment, every successful strategy there must proceed by rejecting subsets of mushrooms on the basis of cues which tend to make correct rejections and few false alarms. It is in this respect that spore-print-color and habitat (and odor and gill-size) exce
	-

	However, this rather involved explanation cannot enable us to state in advance which particular cues will be employed within elite Lethal strategies, but merely to offer a post-hoc analysis of successful strategies. Even in this respect the explanatory strategy is imperfect since it cannot account for why alternative cues were not utilized in place of those that were. For example, there exist cues with lower false alarm rates than spore-print-color and habitat which were not employed to any great degree. Wh
	-

	In the Odor and Flat environments, the distribution of cue usage is even harder to understand. Gill-spacing, a popular cue in the Odor environment, is unremarkable save that it enjoys a low miss rate. However, there is little indication that misses are more crucial in the Odor environment than in the Flat environment, for instance, where the gill-spacing is never utilized by an elite strategy. 
	The reason for the difﬁculty we experience in predicting and explaining the successful cue orderings stems from the properties of lexicographic strategies and our reliance on measures of cue performance derived from their application to the entire space of decisions. A strategy’s highest ranked cue will be consulted in all decisions. However, since this ﬁrst cue may sometimes suggest a course of action (i.e., eating or rejecting) other than checking the value of the next cue, this next cue will only ﬁgure i
	-

	Figure 15 demonstrates this problem by depicting the direction in which cues at each rank in a lexicographic strategy tend to be utilized. Recall that depending on the stopping rule employed in conjunction with a cue, its presence or absence can be the prompt for either positive (eat), negative (reject) or neutral (check next cue) behavior. Rules can be divided into those which tend to consider the presence of a cue to be an indicator of edibility and/or its absence to be an indicator of toxicity, and those
	early 

	The divergence between the performance of a cue over an entire space of problem items (global validity) and its performance across the subset of items which it actually encounters as a consequence of the cues preceding it in a lexicographic 
	-

	Figure
	The percentage of elite strategies which treat cues in the predicted (full bars) versus non-predicted (empty bars) direction across the rank order of cues, for the four environments. Because strategies vary in the number of cues they involve, columns vary in height. Notice that whilst early ranked cues tend to be treated in the predicted direction, the polarity of later cues is not predicted by global validity measures. 
	Figure 15. 

	ordering (conditional validity) can be expected to increase with the rank of a cue, as mentioned above. In addition, the rate at which this divergence increases with rank can be expected to itself increase with the degree to which the signiﬁcance or frequency structure of an environment tends to focus performance on fewer decision items. Consider that in the Orthodox environment, the contribution of each individual success or error on the part of a cue to its validity is equal. In contrast, within the Odor 
	-
	global 

	This issue closely parallels the problem of model reduction in the statistical practice of multiple regression. Many independent variables (cues) may have high predictive power when ﬁtted ﬁrst, that is, exhibit a high global validity. However, when the complete model (all cues) is ﬁtted, the predictive power of each contributing variable will be less than this ﬁrst-ﬁtting measure. Discovering the best set of predictors is a problem which cannot be solved by consulting global measures of validity alone. 
	-

	This problem has implications for lexicographic strategies which order their cues according to global measures of validity, as Take The Best does. Their performance will tend to degrade in increasingly structured environments. This is shown to be true for the Mushroom Problem in Figure 16, which depicts the mean long-term performance of each set of elite strategies in each environment and the performance of a lexicographic strategy with cues ordered according to their global validities. This Take-The-Best-l
	-

	In addition, Figure 16 demonstrates that the ability of strategies evolved within one environment to perform in another varies in an intelligible manner. Whilst the elite strategies evolved within the Orthodox, Flat, and Odor environments perform at essentially the same level within the Orthodox and Flat environments, more of a difference is discernible within the Odor and Lethal environments between ‘foreign’ strategies and those indigenous to the environment. What this demonstrates is that elite strategie
	-
	-
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	Figure
	The average mean long-term performance across the four environments of elite strategies evolved for particular environments and a Take-The-Best-like strategy (TTB) that uses cues in order of their global validity. Performance is plotted on the -axis such that a score of 100 would be obtained by an omniscient and hence perfect forager. In the Orthodox and Lethal environments random behavior would achieve a score of zero. In the Flat and Odor environments, random performance would achieve a score of roughly 1
	Figure 16. 
	y

	with mushrooms which are signiﬁcant in their own environment, whereas the errors made by elite Orthodox and Flat strategies are distributed over the space of mushrooms with no concern for their impact in the Odor environment. 
	-

	One possible explanation for the difference between novices and experts noted earlier stems from these observations. If novices do not appreciate the underlying signiﬁcance structure of a domain, but experts do, one would expect that in addition to novices perhaps exhibiting a lower level of overall performance, their pattern of successes and errors would not match that of experts, who are more likely to gain their performance from correctly dealing with problems which they consider to be important and/or f
	In the Lethal environment the difference between well-adapted strategies and interlopers is most evident. This results from the foreign algorithms’ tendency to tolerate a few misses, since their effects can be compensated for by an associated increased number of hits. In the Lethal environment this strategy is clearly maladaptive. 
	-

	The Take-The-Best-like strategy achieves its low level of performance in the Lethal environment by rejecting every mushroom in favor of the alternative food source. Its conservatism or risk aversion stems from the fact that since no single cue is capable of making error-free recommendations of edibility across the whole space of mushrooms, and errors of this kind are lethal, every cue is best used to reject mushrooms (scoring on average 0.18 rather than negative inﬁnity). As a result every cue is ranked equ
	-

	The approach of the elite Lethal strategies falls somewhere between this extreme risk aversion and the blasé attitude to misses exhibited by elite foreign strategies. As discussed above, by using initial cues to exclude particular sets of mostly toxic mushrooms, elite Lethal strategies are able to use subsequent cues to accurately distinguish edible mushrooms from the remainder. In this way they achieve a remarkably competent performance, on average wrongly rejecting (false-alarming) one in 10 edible mushro
	-
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	ONCLUDING THOUGHTS ON SIGNIFICANCE STRUCTURE 
	4.4. C

	Using an artiﬁcial foraging task we have demonstrated that manipulating the signiﬁcance structure of a decision problem can have important implications for the success of decision-making algorithms. We have shown that in order to understand the structure and performance of decision makers in structured environments an 
	Using an artiﬁcial foraging task we have demonstrated that manipulating the signiﬁcance structure of a decision problem can have important implications for the success of decision-making algorithms. We have shown that in order to understand the structure and performance of decision makers in structured environments an 
	-

	appreciation of this structure is necessary. Signiﬁcance structure will impact on the performance of strategies in complex ways. Speciﬁcally, using global measures of a cue’s performance will tend to become misleading as environment structure increases, because the disproportionate contribution of a small number of problem items to a cue’s effective performance will cause such global measures of a cue’s utility to deviate from the effective utility of a cue within a particular strategy. This was demonstrate

	5. Overall Conclusions 
	Rather than conceiving of decision-making success as equivalent to some general-purpose measure of accuracy, the relevant measure is one which captures the extent to which a mechanism copes with its environment, meeting the goals of the decision-making agent. Such a measure must take into account the structure of the agent’s environment, including both the environment’s frequency structure and its signiﬁcance structure. Employing this ecologically motivated form of assessment leads to a new vision of what c
	-
	-

	Notes 
	Half ranks were employed so that cues could mutate to fall in between two previously adjacently ranked cues. After reproduction, ranks were renormalized so that they were again consecutive integers. 
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