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Abstract. A working assumption that processes of natural and cultural evolution have tailored the 
mind to fit the demands and structure of its environment begs the question: how are we to charac-
terize the structure of cognitive environments? Decision problems faced by real organisms are not 
like simple multiple-choice examination papers. For example, some individual problems may occur 
much more frequently than others, whilst some may carry much more weight than others. Such 
considerations are not taken into account when (i) the performance of candidate cognitive mechan-
isms is assessed by employing a simple accuracy metric that is insensitive to the structure of the 
decision-maker’s environment, and (ii) reason is defined as the adherence to internalist prescriptions 
of classical rationality. Here we explore the impact of frequency and significance structure on the 
performance of a range of candidate decision-making mechanisms. We show that the character of 
this impact is complex, since structured environments demand that decision-makers trade off general 
performance against performance on important subsets of test items. As a result, environment struc-
ture obviates internalist criteria of rationality. Failing to appreciate the role of environment structure 
in shaping cognition can lead to mischaracterising adaptive behavior as irrational. 
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1. Introduction to the Problem of Environment Structure 

Organisms are matched to the demands of particular environments. Deep-sea crea-
tures, for instance, have evolved to require a high pressure aqueous environment, 
and to exploit the opportunities that this environment affords (such as profound 
darkness as a backdrop for bioluminescence) in order to effect their survival and 
reproduction. When taken out of the environment that they are adapted to, such 
creatures can suffer explosive consequences. Within biology this vital match 
between a biological system and its environment is termed ‘fit’. The environment 
to which an organism is fitted by evolution is known as its ‘niche’. 

In much the same way that biological devices are matched to their niches, 
decision-making mechanisms are also matched to particular kinds of task (see, 
e.g., Gigerenzer, Todd and the ABC Group, 1999). As in the case of biological 
fit, the suitability of these cognitive mechanisms is predicated on the structure of 
their environment. The success of a particular cognitive mechanism will depend 
not only upon the task demanded of it, but also the nature of the problem it faces in 
achieving this task. Whilst a tin-opener is suited to the task of opening tins, it may 
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not be suited to particular tins (such as oil drums, etc.) — its limitations make it ill-
fitted to certain problems but suitable for others. The extent to which an organism 
fits its niche, or a mechanism matches the problem it faces, is the extent to which 
it meets the demands of its environment. 

These considerations imply straightforwardly, that different environment struc-
tures will, by definition, favor different cognitive mechanisms. Thus, to evaluate 
the performance of these mechanisms, we have to take environment structure into 
account. But what is environment structure and how are we to measure it? Here 
we concentrate on the ramifications of two well-specified aspects of environment 
structure on the performance of cognitive decision-making mechanisms. 

To appreciate these two forms of environment structure, imagine that you are 
a university professor. Every once in a while, a student who has been offered a 
similar job by two universities approaches you for your advice. Which job offer 
should they accept? 
(1) Since neither job applications nor offers of employment are made at random, 

one might expect certain universities to feature more frequently than others in 
this kind of decision. 

(2) Since not all universities have equal status, some decisions of this kind may 
be more significant than others. 

Suppose that your students know that across all the possible pairs of universities, 
your advice is correct 80% of the time. Suppose that they also know that a colleague 
of yours is only correct 70% of the time. Should they approach you for advice 
rather than your less knowledgeable colleague? Not necessarily. Despite the higher 
accuracy of your advice across possible problems, the students may quite rightly 
reject you if the 20% of cases in which you err are the most important or frequent 
ones, while your colleague does not make these frequent, costly mistakes, but rather 
errs only in trivial or uncommon circumstances. 

Notice that in this example, general-purpose knowledge (high accuracy across 
possible test items) has been sacrificed for special purpose knowledge (high accur-
acy across frequent or significant test items). Notice also that failure to appreciate 
either frequency or significance structure in this example will lead observers to 
conclude that students are acting irrationally in choosing the less knowledgeable 
professor. 

Putting ourselves in the shoes of the job-seeking student, how should we assess 
the performance of each professor before deciding whose advice to heed? We might 
carefully select specific test items which we expect to best discriminate between 
hypotheses regarding the professors. Whilst patterns of success and failure across 
such a set of diagnostic test items may reveal facts about how the professors go 
about solving their task, the performance over such a set will not be representat-
ive of the professors’ performance in general unless this set of test items is itself 
representative. 

Similarly, assessing the performance of each professor using a multiple-choice 
paradigm in which (i) the answer to each test item is weighted equally, and (ii) 
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either every possible test item is presented once, or a uniform random sample of 
possible test items is presented, will also fail to capture the underlying structure of 
the problem, and therefore will misjudge any decision-making mechanism adapted 
to that structure. 

Assessing each professor on a representative or ‘natural’ sample (Brunswik, 
1955) of test items is the only way to reasonably decide between them. This ap-
proach to assessment and the role of environmental considerations derives from 
an ecological perspective on rationality which itself follows from the evolutionary 
biology considerations with which this paper opened. In the next section we present 
the foundations of this notion of ecological rationality, before turning to specific 
examples of frequency structure and significance structure, and their implications 
for decision making in structured environments. 

2. Ecological Rationality 

Consider two contrasting assumptions about how best to conceive of cognitive 
mechanisms. The first stems from an observation about origins. 
• Assumption: processes of natural and cultural evolution (sometimes via the 

lifetime learning fashioned by these processes) have tailored the mind to fit 
the demands and structure of its environment. Behavior must be adaptive, i.e., 
suited to its proper environment, to be successful. 

This assumption invokes a natural process (evolution) and an externalist criterion 
of success (the environment). It has a direct implication. 
• Implication: the assessment of candidate cognitive mechanisms must be sens-

itive to facts concerning environment structure. 
The second conception of cognitive mechanisms considers them to approximate 
general-purpose, optimal (and ultimately mythical) devices. It is thus an assump-
tion about goals. 
• Assumption: minds are best understood as approximating a Laplacean su-

perintelligence (Laplace, 1951), which will, by definition, achieve general-
purpose, optimal performance in any situation, no matter how rare; for any 
price, no matter how costly; and for any reward, no matter how meager. 

This assumption invokes an ideal, and implies internalist criteria for success. 
• Implication: general purpose performance cannot, by definition, rely upon 

assumptions about the problem to be faced, hence the behavior of candidate 
cognitive mechanisms should conform to internalist rational criteria, e.g., co-
herence, transitivity, etc., since it is through the adoption of these criteria that 
a superintelligence will achieve its optimal performance. 

Whilst this second, classically rational approach to cognition is somewhat of a 
straw man, the internalist criteria which it promotes are widespread within decision-
making psychology and related fields, taking the form of prescriptive norms; Your 
Subjective Probabilities Must Sum to Unity! Be Transitive in Your Choices! Be 
Coherent! Be Consistent in Your Preferences! In contrast, the first approach to 
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cognition embraces an ecological perspective on rationality, dispensing with in-
ternalist criteria in favor of an externalist performance metric. In the same way 
in which evolutionary biology assesses the fitness of adaptations in terms of the 
extent to which they perform the task for which they were selected, ecologically 
rational reasoning is reasonable to the extent that it is successful within its proper 
environment. 

The perspective on cognition afforded by the concept of ecological rationality 
is a powerful one. Understanding its rationale requires that certain lay terms be 
given technical meanings. Although space limitations prevent a full account of 
its derivation, a few of the more pressing issues will be briefly addressed here 
(readers are directed to Millikan, 1984, for an account of the role of evolution in 
underwriting the attribution of functions to cognitive mechanisms). 

2.1. PROXIMALITY AND PROXIHOOD 

First, the phrase ‘proper environment’ is used here (e.g., in the first assumption 
above) in the same technical sense in which Millikan (1984, 1993) employs the 
term ‘Normal conditions’ to mean “the conditions to which [a] device ... is biolo-
gically adapted” (Millikan, 1984, p. 34). This biological adaptation is ultimately 
evolutionary, but may also involve learning, as in the case of a mechanism which 
has evolved to detect mates, but is calibrated through some period of juvenile 
experience. The nature of a mechanism’s proper environment must typically be 
established historically since it will usually be a past environment, although as 
noted above, a mechanism which is calibrated by individual learning of some kind 
may be properly suited to its current environment, or at least to the environment in 
which it was calibrated. In general, the proper environment cannot be established 
statistically by establishing what the current environment of a mechanism typically 
is. 

Since our knowledge of past environments will generally be poor, establishing 
the structure of these environments with the degree of precision necessary in order 
to predict, in one fell swoop, the adaptations which resulted from them may be 
hard, if not impossible. However, taking as a working assumption the hypothesis 
that, whatever these environments were, they have shaped the character of extant 
cognitive mechanisms allows us to approach cognition and behavior as evidence 
from which to infer the adaptive tasks faced by our ancestors and the structure 
of the past environments in which our ancestors had to achieve them (c.f. the 
evolutionary psychology approach to studying evolved cognitive mechanisms as 
laid out by Cosmides and Tooby, 1987). This approach is clearly circular: cur-
rent behavior is used to infer past environments which are in turn used to predict 
current behavior-generating mechanisms. However, this circularity is not vicious. 
Each turn of the cycle produces new behavioral hypotheses which can be tested 
and used to revise our environmental assumptions. This process is analogous to 
that employed by the proponents of rational analysis (Anderson, 1991) who iterate 
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through a similar cycle, repeatedly revising the nature of a decision problem un-
til the optimal solution to this problem matches the observed performance of the 
natural decision makers they are interested in. 

Second, in using terms such as ‘success’ and ‘task’ when describing the per-
formance of a natural mechanism, we are eliding an important dimension. The 
manner in which these terms should be interpreted depends on whether one is 
concerned with explanations which are biologically ultimate or more proximate. 
Whilst ultimately every biological adaptation has been selected for the task of 
effecting its own reproduction, with appropriate caveats, organisms and the organs 
they contain can also be considered to face more proximate adaptive subgoals (e.g., 
pumping blood, regulating body temperature, finding food, seducing a mate). Sim-
ilarly, although the success of a natural cognitive mechanism is ultimately cashed 
out in the same fitness terms as any biological adaptation, its performance can be 
understood more proximately in terms of its reasoning success. This reasoning 
success can be considered as a proxy for the biological fitness of a reasoning 
mechanism. 

However, establishing a proxihood relationship between some measure of suc-
cessful reasoning and ultimate fitness is not straightforward. For example, the 
capture of accurate information is often considered to be a good measure of reason-
ing success (e.g., Oaksford and Chater, 1994, 1996, but see also Klauer, 1999). In 
his model of animal communication, Grafen (1990) equates the success of a choosy 
peahen with her accuracy in capturing the mate value of her suitors. One might 
expect that to the extent that a reasoning mechanism tends to provide veridical 
information to the deliberation or action systems which depend on this inform-
ation, such a reasoning mechanism would be fit. However, using the capture of 
veridical information as a proxy for fitness ignores the possibility that even accurate 
information may sometimes be epistemically worthless (Evans and Over, 1996). 

For example, a decision-making mechanism used by a peahen to judge the 
quality of peacocks may provide equally accurate assessments in two cases, yet 
if the first case involves a poor quality suitor and the second a high quality suitor, 
the value of these two pieces of equally accurate information will differ greatly. The 
first assessment allows the peahen to confidently reject a poor suitor, avoiding the 
costly mistake of making a long-term investment with a poor-quality mate. In con-
trast, the second assessment allows her to confidently accept a good suitor, avoiding 
the (presumably) much less costly mistake of overlooking the currently available 
good mate. Thus, these two decisions have radically different implications for the 
peahen’s fitness and hence the fitness of the peacock-assessing mechanism that she 
employs. Moreover, for species in which both sexes are choosy, whether a female’s 
assessment of a particular potential mate is accurate or not may have no impact on 
her fitness if the suitor being assessed rejects her (Todd and Miller, 1999). 

These examples highlight the fact that it is the behavior which results from 
an organism’s reasoning rather than the reasoning itself which is the locus of 
selective pressure. Whilst accurate and error-free reasoning is clearly typically a 



502 SETH BULLOCK AND PETER M. TODD 

conduit leading to adaptive behavior, it does not follow that ‘irrational’ reasoning 
must have negative consequences for the success of an organism’s behavior. As 
we move along the explanatory dimension from explanations of decision-making 
behavior in terms of some ultimate goal (reproduction) to explanations in terms of 
increasingly proximate goals (successful decision making of some kind) we do not 
ever reach a legitimate explanation of an organism’s behavior in terms of achieving 
the consistency, coherence, transitivity, etc., that internalist rational criteria de-
mand. Goals may be proximate to varying degrees, but never entirely divorced from 
the ultimate goal which all natural adaptive behavior subserves. These internalist 
criteria may, to a certain extent, be characteristic of successful decision-making 
behavior in a particular environment, but they are not the decision-maker’s goal, 
merely a side-effect of its being well-designed to achieve whatever that goal may 
be. A decision-maker’s deviation from these rationalist tenets will therefore not 
necessarily result in its reduced ability to achieve its goals, since the prescriptions 
of internalist rationality and the goals of a decision-maker are not coincident. 

For instance, in order to meet the criteria of classical rationality, one’s prefer-
ences must be transitive, that is, if one prefers A over B, and B over C, one must 
prefer A over C to remain rational. Reinforcement training of various animals 
demonstrates that they spontaneously develop novel transitive preferences when 
trained to make pairwise selections between items with adjacent ranks on some 
arbitrary scale (Delius and Siemann, 1998). That is, when trained to prefer A over 
B, B over C, C over D and D over E they spontaneously preferred B over D, despite 
these two items having been reinforced equally over the course of the training. 
Whilst these data suggest that the mechanism governing the learning of preferences 
embodies the principle of transitivity, reanalysis of the original reinforcement ex-
periments reveals that simple associative learning rules can account for the ability. 
The authors conclude that the “capacity for transitive responding could thus be an 
example for [sic] a trait that has primarily evolved by exaptation rather than ad-
aptation” (p. 131, emphasis added) by which is meant that the selective pressure to 
discriminate similar stimuli may account for the transitive preferences of pigeons, 
rats, and humans, rather than any advantage they gain from transitive preferences 
per se. Indeed one can find examples of intransitivity in the untrained preferences 
of animals, as shown in the work of Shafir (1994) on the responses of foraging 
honey bees to artificial stimuli. 

2.2. OPTIMALITY AND ANALYSIS 

Friends of classical rational norms will respond at this point that these norms 
were never intended as prescriptive rules, but as descriptive tools. Since optimal 
performance will be achieved by an agent following the prescriptions of classical 
rationality, they serve a useful purpose in providing the means to calculate a bench-
mark against which natural performance may be measured. Whilst we as scientists 
can calculate this benchmark, there is no claim that cognitive mechanisms perform 
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any such calculation. The behavior generated by a rational cognitive mechanism is, 
however, expected to be well described, or at least approximated, by such optimal 
models. 

We have no objection to this use of optimality modelling. However, it must be 
pointed out that from this perspective, the discovery that human reasoning fails 
to meet the internalist criteria of rationality in some situation (whether it be ex-
perimental or naturally occurring) should not necessarily be the cause for concern 
that it has appeared to be within the judgement and decision-making literature (e.g., 
Kahneman et al., 1982). If internalist rational criteria were never expected to be im-
plemented by cognitive mechanisms, but merely to describe their proper behavior 
(c.f. Anderson’s rational analysis), why should one expect arbitrary laboratory test 
items or natural but novel scenarios to provoke rational responses (c.f. Kahenman 
and Tversky’s heuristics and biases)? 

Indeed, a tradition exists within behavioral ecology which treats experimental 
results not as revelatory of an animal’s rationality, but as indicative of its evolu-
tionary history. For example, the field of optimal foraging theory (Stephens and 
Krebs, 1986) experimentally assesses the foraging behavior of various species in 
an attempt to discover not whether they are smart or stupid, or rational or irrational, 
but what the selective pressures on foraging ability must historically have been for 
these species, and what results these pressures have had in terms of the cognitive 
adaptations which these species possess. When confronted with what, by the lights 
of internalist criteria, must be considered irrational behavior, rather than noting the 
irrationality of the organism involved, these scientists search for environments in 
which (and adaptive goals for which) sacrificing the missing elements of classical 
rationality makes sense. 

The contrast between the approach of behavioral ecologists and that of decision-
making psychologists is crystalized in their response to the possibility of ‘inappro-
priate’ probability matching in animals and humans (Goodie et al., 1999). The 
probability matching phenomenon is most straightforwardly presented in a case 
in which two sites which vary in the rate at which they yield food are attended 
to in proportion to these yields. Maximizing the consumption of food would be 
achieved by attending solely to the most productive food source. However it is 
commonly held that animals and humans often split their attention between the 
sources in proportion to the expected rate of reward at each source (e.g., Davison 
and McCarthy, 1988; Tversky and Edwards, 1966). Whilst learning theorists and 
behavioral ecologists have worked towards discovering in which situations such be-
havior is successful and adaptive and in which it is not (Williams, 1988), decision-
making psychologists have taken the probability matching phenomenon to be evid-
ence of human irrationality (e.g., Dawes, 1988). 
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2.3. RATIONAL SYNTHESIS 

Furthermore, although cognitive mechanisms can be expected to approximate op-
timal solutions to the problems they have been adapted to, we cannot assume that 
they are also built from approximately rational building blocks. Once we have set 
aside optimality theories as a means to derive the contents of organisms’ heads, 
it is difficult to see immediately what assumptions are justified when postulating 
the mechanisms which underpin adaptive behavior. An example from the study of 
vision highlights this problem. 

David Marr (1982) and J. J. Gibson (1979) developed contrasting approaches 
to solving the problem of how animals achieve visual perception. Marr’s compu-
tational approach yielded the pipeline model, comprising a series of modules each 
charged with performing a subpart of the entire task. Each subpart was considered 
by Marr to be the logical requirement of a system able to form a model of the world 
around it on the basis of an impoverished two-dimensional array of intensity values 
(i.e., light falling on a retina). In contrast, Gibson’s ecologically inspired theory of 
direct perception concentrated on how the problem of vision was intimately linked 
with the problems of acting in the world. For Gibson, the task of vision was not 
to construct a three-dimensional model of the world from poor quality data, but 
to reveal the ‘affordances’ of the environment in which the agent was located by 
exploiting invariants in the rich spatio-temporal visual array. 

However, whilst Marr’s system was buildable and hence testable, Gibson’s the-
ory offered almost no clues as to what might constitute the subparts of visual 
systems. Alluding to ‘resonating structures’ did nothing to operationalize his the-
ory, which suffered as a result. For our present purposes, what is interesting about 
this example is that Gibson’s ecological considerations did not directly suggest 
candidate mechanisms in the same way that Marr’s computational approach did. 
Without first principles from which to derive the contents of people’s heads, from 
what source are we to postulate candidate cognitive mechanisms? 

In Marr’s approach we can glean a clue as to a way forward. Although the 
processes involved in the pipeline were considered to be the logical precursors to 
establishing a three-dimensional model of the system’s surroundings which could 
be passed to a suitable spatial reasoning system, Marr did not derive the structure 
of the pipeline entirely from first principles. Rather, several important empirical 
results from the neurobiology of vision (e.g., Hubel and Wiesel, 1959) inspired 
the design of some of the building blocks from which the pipeline was construc-
ted. Once Marr grasped the properties of single cells in the cat striate cortex, 
for example, he was able to use this understanding to construct edge-detection 
algorithms. The design process was thus largely data-driven. Indeed the later stages 
of Marr’s pipeline were never adequately modelled due in part to a lack of empir-
ical data with which to inform their design. Like Marr, we must look to empirical 
studies to suggest candidate cognitive building blocks. 
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More generally, evolutionary processes can be expected to build complex cog-
nitive as well as perceptual systems from combinations of building blocks, them-
selves the adaptive result of selective pressures. As such we should conceive of 
cognitive innards as assemblies of limited cognitive subparts, tinkered with and 
reassembled by mutation and selection until they fit the environment to which 
evolution has adapted them. By using empirical evidence from the study of adults, 
children and other species (e.g., Cummins and Allen, 1998) to suggest the structure 
of candidate cognitive building blocks, and then exploring how the behavior of 
various combinations of these building blocks varies with the structure of their 
environment, we can explore the behavior of model cognitive systems from the 
bottom up, rather than the top down (Gigerenzer and Todd, 1999). 

For example, the recognition heuristic (Goldstein and Gigerenzer, 1999) is pred-
icated on a fundamental psychological phenomenon, recognition memory. This 
phenomenon has been well studied by psychologists and animal behavior research-
ers. It clearly subserves much of our everyday behavior. The recognition heuristic 
utilizes recognition memory to guide decision-making behavior by exploiting the 
fact that recognition tends not to be randomly distributed across possible entities, 
but is typically concentrated on the most important ones. The heuristic can be stated 
as: “A recognized option should be considered to be higher than an unrecognized 
option on any important dimension”. This is clearly a very simple rule. It can be 
considered to be a building block in that it is informationally self-contained and 
can act as a subpart of larger cognitive strategies (e.g., Take The Best, Gigerenzer 
and Goldstein, 1999). 

This process of rational synthesis, the recombination of empirically validated 
cognitive building blocks, has a counterpart in the field of behavior-based robotics 
(Brooks, 1991a,b). Increasingly, roboticists interested in building intelligent con-
trol systems are coming to realize that problems which appear intractable from the 
perspective of control theory can be tackled effectively by assembling networks of 
competing and cooperating behavioral modules. Rather than providing this system 
with some governing module responsible for coordinating the behavior of these 
subparts (a fearsome design problem), the robot designers rely on interactions 
between the robot and its environment to organize the robot’s behavior. Although 
discovering an appropriate combination of modules is not a trivial task, initial 
successes in both handcrafting (Brooks, 1991a) and artificially evolving (Cliff et 
al., 1993) such robots suggest that this approach to understanding the design of 
complex systems is fruitful. 

In addition, roboticists interested in using robotic systems to model natural 
systems have discovered that building robots from empirically validated build-
ing blocks can lead to new and interesting theories of animal behavior. Webb 
(1994, 1996) reports the use of a robot cricket to demonstrate that the phono-
taxis achieved by natural female crickets when they approach calling males can 
be achieved with practically no cognitive mechanism at all, through relying on the 
acoustic properties of the cricket’s ears. 
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A repeated finding within these related fields is that complex adaptive behavior 
can arise from the interaction between simple mechanisms and their environment. 
This observation formed the basis for Valentino Braitenberg’s (1984) synthetic psy-
chology, the use of artificially constructed systems (in this case hypothetical ones) 
to explore the minimal properties required of systems before various intentional 
attitudes (fears, desires, beliefs, etc.) are attributable to them. The rational synthesis 
we employ involves the construction of artificial reasoning systems which are com-
putationally undemanding, and hence psychologically plausible, from decision-
making building blocks which are themselves computationally undemanding, and 
hence psychologically plausible. We then explore the manner in which the per-
formance of such reasoning systems is dependent on facts about the tasks they face 
and the structure of the environment in which they find themselves. 

2.4. THE THREAT OF EXPLOITATION 

Our concern with the explanatory role of environment structure in accounting for 
the performance of a candidate cognitive mechanism has lead us to reject inter-
nalist rational criteria as unnecessary for such explanations. For example, what 
use is transitivity across all choices a cognitive mechanism could ever be expected 
to make, for instance, if this transitivity is achieved at the expense of adequate 
response time on a few crucial choices? Might it not be better to sacrifice this 
property within a set of trivial choices in order to guarantee high speed judgements 
in a few do-or-die situations? 

Yet the employment of internalist rational criteria in the judgement and decision-
making literature is commonplace. Why is this the case? One answer is that if the 
domain to which a cognitive mechanism is expected to apply is unstructured, as 
it is by definition for the Laplacean Superintelligence, and as is often implied by 
the use of a flat accuracy performance metric, then environmental considerations 
will appear superfluous. If success over here is just as good as success over there, 
then general performance wins out. A corollary of this position is that any failure of 
reason is equally damaging to a decision-maker’s performance. Irrationality will be 
punished, since disregarding internalist criteria of rationality will leave one open 
to exploitation. However, limited, structured domains make salient the fact that 
internalist criteria are obviated when performance on a limited and structured set 
of items is all that is expected of a cognitive mechanism. 

Whilst an organism which fails to adhere to some internalist maxim exposes 
itself to exploitation in the form of an appropriate money pump or Dutch book 
(Schick, 1986), for example, if no such exploitatory device exists within the or-
ganism’s environment, or if the losses due to exploitation are more than made up 
for by the gains made in other situations, then there is no force to the internalist 
exhortations. In contrast, if there does exist an exploitatory entity leeching the 
irrational organism’s utility and the organism’s irrationality does have net nega-
tive consequences on its fitness, then one need not appeal to internalist criteria to 
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demonstrate its irrationality. In this instance, the organism will be irrational by the 
lights of externalist ecological considerations — it will be unfit. 

2.5. SUMMARY 

To recapitulate, since organisms are adapted to fit their environment by selective 
pressures, behaviors and the mechanisms which produce them are only intelligible 
in context. Cognitive mechanisms are bespoke mechanisms, tailored to fit particular 
circumstances, they are ‘made to measure’. Whilst there may be general trends in 
dress-making or tailoring (i.e., preference for economy, goodness of fit, quality 
of material, etc.), these are mere trends, not laws or a priori  truths. In the same 
way that opulent, wasteful, ill-fitting, uncomfortable clothing can be fashionable 
in certain circumstances, so inconsistent, intransitive, seemingly ‘irrational’ cog-
nition will often be adaptive in particular structured environments. As researchers 
we must find ways of appreciating the manner in which a cognitive mechanism’s 
niche is reflected in its structure — we too must be ‘made to measure’ environment 
structure. 

In the remainder of the paper we will explore two important kinds of environ-
ment structure which are well-defined and hence measurable. Frequency structure 
describes the relative prevalence of different decision items within a decision do-
main. Significance structure describes the relative importance of different decision 
items within a decision domain. Each class of structure will be explored through 
manipulating the structure of an artificial decision problem and observing the im-
pact this manipulation makes on the performance and structure of appropriate 
decision-making heuristics. These rather specific examples are carried out here in 
sufficient detail to demonstrate the sort of analytical effort that is often necessary 
to begin to understand why a particular decision mechanism fits a particular envi-
ronment. They also illustrate some more general lessons about environment/agent 
interactions and the nature of ecological rationality as a whole. 

3. Frequency Structure 

We define the frequency structure of a decision-maker’s environment as the relative 
frequency with which each test item is encountered by the decision maker. A flat 
frequency structure implies that no test item is more likely to be encountered than 
any other. In contrast, a skewed frequency structure implies that some items are 
more likely to be encountered than others. 

3.1. THE GERMAN CITIES PROBLEM 

Here we employ an arbitrary data set (first reported by Gigerenzer et al., 1991) 
as an arena in which to explore the effects of varying frequency structure. The 
German Cities Problem is an inference task concerning the population sizes of a 
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Figure 1. Each city either possesses (+) or does not possess (...) each of nine binary cues. 
Cities in possession of any cue tend to have a larger population size than cities lacking that 
cue. 

set of German cities. The task is to judge which is the larger of a pair of German 
cities. The cities involved are the 83 largest in Germany (all cities with population 
above 100 000 inhabitants in 1988). The information upon which the judgement 
must be based consists of nine binary cues (see Figure 1), for instance, whether 
the city has a soccer team in the top league of the Bundesliga (the German football 
league). 

This task has previously been used as an inference problem with which to as-
sess the performance of a range of decision-making heuristics (Gigerenzer et al., 
1991; Gigerenzer and Goldstein, 1996, 1999; Hertwig, Hoffrage and Martignon, 
1999). However, this previous research has proceeded with no attention to fre-
quency structure, assuming that each comparison between a pair of cities occurs 
with equal frequency and thus contributes equally to a measure of decision-making 
performance. 

Gigerenzer and Goldstein (1996) report that the recognition rates for these cit-
ies (i.e., the proportion of people claiming to recognize each city) increases with 
population size. On this basis we might assume that the actual frequency structure 
of this pairwise comparison task (if people encounter this problem at all) is not flat, 
but that high population cities tend to be reasoned about more frequently than low 
population cities. This is clearly one manner in which the German Cities Problem 
environment could be structured. We explore this and a second class of frequency 
skew, along with their complements, by varying which pairs of German cities are 
more likely to be encountered: 
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(1a) Product Skew: the likelihood that a pair of cities will be encountered by a 
decision-maker is proportional to the product of the city population sizes. 

(1b) Reciprocal Skew: this is the complement of Product Skew, the frequency with 
which a pair of cities will be encountered being inversely proportional to the 
product of the city population sizes. 

(2a) Similarity Skew: the likelihood that a pair of cities will be encountered by 
a decision-maker is inversely proportional to the difference between the city 
population sizes. 

(2b) Difference Skew: this is the complement of Similarity Skew, the frequency 
with which a pair of cities will be encountered being proportional to the 
difference between the city population sizes. 

Whilst we do not know whether one or any of these frequency structures charac-
terizes the distribution of city-size comparisons that people might naturally face, 
these classes of skew have been chosen because each is probably representative 
of some natural problems. For example, if one encounters entities (cities) at a rate 
proportional to their value on some dimension (population size), then Product Skew 
will describe the frequency structure of pairwise comparisons between encountered 
entities. Similarly, if comparisons between very different entities are handled by 
some crude early filter, the distribution of remaining comparisons will be biased 
towards pairs of similar entities. A mechanism operating on this subset will be 
subjected to a decision environment with a Similarity-Skewed frequency structure. 
Red deer, for instance, assess the fighting ability of potential opponents by using 
increasingly sensitive measures (Clutton-Brock and Albon, 1979). The challenger 
and harem-holder first roar at each other. If there is a significant difference between 
the volumes, the quieter stag retreats. If roaring fails to decide the contest the stags 
proceed to the next cue: parallel walking. If this cue also fails to distinguish the 
stags, they proceed to head-butting. Decision-making mechanisms occurring late 
in such a sequential assessment will tend to have to distinguish between more 
similarly matched opponents than those employed earlier in the sequence. 

For each class of frequency structure, we explore two degrees of skewness. 
(1) Mild: the most frequent city pair occurs 10 times more often than the least 

frequent. 
(2) Extreme: the most frequent city pair occurs 100 times more often than the 

least frequent. 
In each environment the least frequent city pair occurs 10 times. For each envir-
onment, the proportion of comparisons in which each individual city takes part is 
shown in Figure 2. 

It is important to note that, rather than being interested in the problem of com-
paring city sizes itself, we are concerned with the influence of frequency structure 
on decision problems in general (but to make our points we will concentrate in 
depth on this one particular example). Indeed the German Cities Problem is one 
with perhaps little intrinsic import, serving here as a model, rather than an object 
of enquiry in its own right. 
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Figure 2. The distribution of test pairs across city size is shown for each of the four frequency-skewed environments in comparison to the default flat 
environment. The 83 German cities are arranged on the x-axis in order of increasing population size. The proportion of test pairs featuring each city is plotted 
on the y-axis. 
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3.2. THE DECISION ALGORITHMS 

To explore the impact of environmental frequency structure on the structure and 
performance of decision mechanisms, we chose a small set of such mechanisms 
for comparison. The four mechanisms we use all make their choices on the basis 
of some set of the available cues, but they vary in the exact number of cues used 
and in the complexity of cue processing. The most sophisticated algorithm is mul-
tiple linear regression, which first computes the optimal weights for weighting 
and combining (summing) all of the available cues so that the total difference 
(error) between the algorithm’s predictions (here predicted population size) and 
the actual criterion values (actual population size) is minimized. Then, to make 
each individual choice between a pair of objects (e.g., cities), predictions are made 
for the criterion value of each object by weighting and summing its cue values, 
and the object (city) with the higher predicted criterion value (population size) in 
the pair is then chosen as the final decision outcome. Multiple regression thus uses 
all available information (cues), and is sensitive to their predictive relationship to 
every object. 

The second algorithm, called Dawes’s Rule, similarly uses all of the available 
cues, but it processes them in a rather less sophisticated fashion. Initially, the 
algorithm must compute the direction of association between each cue and the 
criterion value — that is, does the cue on average indicate a higher or a lower 
criterion value (so for example, does having a Bundesliga soccer team indicate 
a higher city size in over half of the city comparisons?). Then, to make each indi-
vidual pair comparison, the number of negatively-associated cues for each object is 
subtracted from the number of its positively-associated cues to create a final score 
or tally, and the object with the higher score is chosen. This simple method works 
surprisingly well — Robyn Dawes, after whom it is named, has demonstrated 
its ability to come close to the performance of multiple regression (Dawes and 
Corrigan, 1974) — even though it is sensitive only to the ‘direction’ in which each 
cue points (indicating higher or lower criterion values), but not how strongly. 

The last two algorithms take a different approach to decision making. Rather 
than combining all of the available cues in some manner, they consider cues one 
at a time, sequentially, until the first cue that enables a decision to be made is 
found. This decisive cue will be the first which discriminates between the two 
objects being compared, i.e., one object possesses the cue whilst the other does 
not. If possession of the cue is positively correlated with the criterion, the object 
in possession of the cue is chosen. If possession of the cue is negatively correlated 
with the criterion, the object lacking the cue is chosen. Once a decision has been 
reached in this way the decision-making process is at an end — all further cues 
are ignored. Thus all of the available information need not be (and usually is not) 
considered, let alone processed — and the ultimate decision is always made on the 
basis of just one discriminating cue. By considering the cues in different orders, 
different one-reason decision making heuristics can be built (see Gigerenzer, Todd, 
and the ABC research Group, 1999, for further details). 
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In particular, here we use the Take The Best algorithm, which orders cues by 
their validity — that is, by how often they indicate the larger criterion value in a 
pair of discriminated objects — so that the best cues are considered first. Take The 
Best is thus sensitive to the direction and strength with which cues indicate the 
criterion values, but its sensitivity to cue strength only extends to their ranking, not 
to their precise differences in strength. (Hence, the strength or validity of two cues 
could change significantly without affecting how they are used by Take The Best; 
only if their relative ranks change — if one cue becomes stronger than the other — 
will they be used in a different order.) 

We also compare the effectiveness of an even simpler one-reason decision al-
gorithm, the Minimalist heuristic, which examines cues in a random order, stopping 
when it stumbles upon the first cue which discriminates between the objects. Min-
imalist is thus not sensitive to cue strength at all, but only to what direction the 
cue points with respect to the criterion (that is, whether it indicates higher or lower 
criterion values, or in other words, whether its validity is above or below 0.5). And 
yet despite its extreme simplicity, Minimalist does not fall far behind the other 
algorithms, as we will see in the next section. 

3.3. THEIR PERFORMANCE 

Each algorithm was parameterized (e.g., cues ordered or weighted) on the basis of 
the skewed environment within which their performance was to be assessed. This 
ensures that each algorithm was appropriately matched to its environment. Each 
algorithm was then made to judge which was the larger of every possible pair of 
cities and their average performance across the entire set of pairs was computed. 
However, some pairs of cities were presented multiple times according to the fre-
quency structure of the environment. Thus, a judgement concerning a frequent pair 
of cities contributes more to the performance of an algorithm than a judgement 
concerning an infrequent pair of cities. 

Whilst the performance of each algorithm relative to the others remained stable 
across environments, the absolute performance (i) increased with increasing 
Product Skew, (ii) increased with increasing Difference Skew, (iii) decreased with 
increasing Similarity Skew, and (iv) decreased with increasing Reciprocal Skew 
(Figure 3). It appears reasonable that choosing the larger of two similarly sized 
cities will be harder than making the same judgements concerning pairs of dis-
similar cities, and perhaps that inferring the larger of a pair of smaller cities will 
be harder than inferring the most populous of a pair of larger cities, since smaller 
cities may resemble each other more than larger ones. Because we are dealing with 
an artificial decision problem we are in a position to move beyond these intuitive 
assessments of difficulty and explore explanations for the variation in performance 
caused by our manipulations of the problem’s frequency structure. 

The source of changes in the algorithms’ performances clearly lies in changes in 
both the predictive validities and the discrimination rates of the cues made available 
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Figure 3. The performance of the four simulated algorithms in each of the eight structured environments is plotted in comparison to the default flat 
environment (middle of each panel). Whilst the relative success of algorithms with respect to each other changes little, their overall performance is dependent 
on the type and degree of skew exhibited by the environment. 
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Figure 4. Cue Validity, calculated across all test pairs as (number of correct judgements)/(number of test pairs), varies with environment structure. A cue 
which correctly predicts a frequent test pair enjoys higher validity. Groups of cues respond similarly to changes in frequency structure. 
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Figure 5. Discrimination Rate, calculated across all test pairs as (number of discriminations made)/(number of test pairs), also varies with environment 
structure. A cue which discriminates a frequent test item enjoys a greater discrimination rate. 
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to the algorithms (Figures 4 and 5). Validity is defined as the ratio of the number 
of correct judgements made by a cue to the total number of judgements made by a 
cue, whilst discrimination rate is defined as the ratio of the number of judgements 
made by a cue to the total number of judgements sought from a cue. Some cues 
respond positively to a certain frequency skew, tending to correctly predict a greater 
proportion of judgements as those comparisons that the cue discriminates correctly 
become increasingly over-represented. In contrast, other cues may suffer from the 
same frequency skew, as the comparisons that they deal with correctly become 
increasingly under-represented. In terms of both changes in validity and discrim-
ination rate, groups of cues appear to respond similarly to particular manipulations 
of frequency structure, suggesting that a typology of cues could be constructed. 

In summary, we have seen that frequency structure affects the performance of 
decision-making algorithms. Despite algorithms having been configured to suit 
each structured environment, systematic differences in their performance were in-
duced by skewing the frequency structure of these environments in particular ways. 
The general drop in performance induced by Similarity Skew and Reciprocal Skew 
coupled with the general increase in performance induced by Product Skew and 
Difference Skew indicate that the former are harder to deal with than the lat-
ter. Whilst different cues respond differently to different frequency structures, the 
character of this response is often shared by several cues. 

3.4. EXPLAINING PERFORMANCE IN TERMS OF ENVIRONMENT STRUCTURE 

There are several possible explanations for the changes in performance induced 
by changes in environment structure in this domain, some of which are specific 
to the German Cities Problem and some of which are more general. The first and 
most general is that there exist properties inherent to dichotomous-cue pairwise 
choice problems which imply that particular kinds of frequency structure will be 
more difficult than others. The second is that underlying properties of the decision 
criterion of this particular problem control the impact of different frequency struc-
tures. Third, the distributions of the cues across the German Cities might influence 
the manner in which frequency structure affects decision-making performance. 
Fourth, the changes in environment structure may not make the problem easier or 
more difficult in general, but either favor or disfavor certain algorithms, of which 
the ones tested are examples. 

A combination of these explanations seems most likely to account for the res-
ults reported above. However, it is worth noting some points in favor of this first 
explanation. Most importantly, all four decision heuristics responded similarly to 
the changes in environment structure that we imposed. These heuristics differ in 
many ways, yet benefit or suffer from the same kinds of environment structure. Fur-
thermore, the effects on performance induced by changes in environment structure 
occur irrespective of the sensitivity of the algorithms to these changes. 
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Figure 6. Take The Best utilizes cues in an order determined by their validities. Here the 
manner in which this cue order changes as the result of frequency structure affecting cue 
validities is shown for the nine environments. 

For example, the simplest of the strategies tested, Minimalist, is affected by 
changes in environmental frequency structure, tracking the performance of the 
other algorithms (although always at a slight distance), despite it not being sensitive 
to most of these changes. Recall that Minimalist uses the polarity of each cue to 
govern its inferences. As such, this strategy treats environments identically unless 
the polarity of at least one cue differs between them (e.g., a cue which predicted 
high population size in the flat environment predicts low population size in the 
skewed environment). 

For the frequency structures explored here, out of the nine cues in eight skewed 
environments only five reversals of predictive validity occurred. Four of these 
reversals affected the East Germany cue, whilst the remaining one affected the 
Industrial Belt cue. The two cues which suffer validity reversal have the lowest 
validity of the nine available, ensuring that their reversal makes little impact on the 
performance of the algorithm. This is not surprising since the polarity of cues with 
poor validity will be more easily reversed by manipulation of an environment’s fre-
quency structure. These observations suggest that Minimalist is typically oblivious 
to the manipulations of frequency structure that we have imposed on the German 
Cities Problem. 

This type of analysis draws attention to the sensitivity of algorithms to changes 
in their environment. Minimalist and Dawes’s Rule only accommodate changes in 
the polarity, of cues. Take The Best is only sensitive to changes in cue validity 
which are large enough to cause changes in the rank order of cues by their validity 
(see Figure 6). Multiple regression is in principle sensitive to any change in cue 
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validity. Given these facts, it is understandable that the difference in performance 
between a sensitive algorithm and a less sensitive algorithm increases with the 
performance of the former, i.e., the degree to which a sensitive algorithm out-
strips its less sensitive competitors increases with the degree to which the sensitive 
algorithm can exploit the structure of its environment. 

This can be seen by looking at the difference between the performance of the 
most sensitive algorithm, multiple regression, and that of the least sensitive, Min-
imalist, across all nine environments. This difference is impressively positively 
correlated with the absolute performance of multiple regression (r=0.92). That is, 
multiple regression benefits from its greater sensitivity to environment structure 
by exploiting this structure to a greater extent. Indeed all six such comparisons 
between algorithms are correlated in the predicted direction (r>0.75) except that 
Take The Best’s advantage over Dawes’s Rule in terms of sensitivity does not trans-
late into an increasing advantage over Dawes in the most structured environments 
(r=−0.6). 

It is important to stress at this point that we are considering here only the fitting 
performance of the four algorithms — that is, how well they can exploit the struc-
ture in a particular set of data from a particular environment. (This situation is also 
described as one in which the data set on which the algorithm is trained is the same 
as the data set on which the algorithm’s performance is tested.) In this case, the 
set of data being fitted by the algorithms is the entire frequency-skewed set of all 
pairs of cities. Thus, there is no generalization to new data (where the training set 
and testing set differ) in the analysis we present here. Generalization performance 
is of course also of great interest (see Martignon and Schmitt, this issue, for a 
detailed discussion of the generalization robustness of simple algorithms including 
Take The Best). But first we must understand more about how the structure in a 
particular set of data can be exploited by algorithms to make accurate decisions in 
that same data set. 

How can we test whether the changes in performance induced by our manipula-
tion of frequency structure are not due to some facts peculiar to German Cities (and 
other related environments)? One clue comes from Figure 2, where it appears that 
Product and Difference Skew have qualitatively analogous affects on the frequency 
with which different cities appear in test items. Similarly, Reciprocal and Similar-
ity Skew have comparable effects on these distributions. This could presumably 
account for the similarity in performance of algorithms in these environments — 
but how could this pattern arise? 

The similarity between Product- and Difference-Skewed environments, and 
between Reciprocal- and Similarity-Skewed environments, stems from the under-
lying structure of the distribution of population size across German Cities. Since 
the population of German Cities decreases roughly exponentially with rank, form-
ing a so-called J-shaped distribution (see Hertwig et al., 1999), the largest cit-
ies (which feature most frequently in the Product-Skewed environments) are also 
very different from most of the other cities, and hence feature most frequently 
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in the Difference-Skewed environments. Similarly, the many small cities are sim-
ilar in size to each other and hence are disproportionately represented in both the 
Reciprocal-Skewed and Similarity-Skewed environments. (If the frequency struc-
ture of each environment had been determined using the rank, rather than the real 
value, of each cities population size, these similarities would be markedly reduced 
since they rely essentially on the clustering of smaller cities and the isolation of 
larger cities along the population size dimension.) 

Although pairs of the environments do indeed appear alike in their gross char-
acteristics, Product and Difference Skew differ considerably in the extent to which 
the most common pairs are over-represented in comparison to the least common 
pairs. Furthermore, Reciprocal and Similarity Skew differ in that the latter features 
particular mid-sized cities far more frequently than the former. For example, in the 
extreme Similarity-Skewed environment, Münster and Mönchengladbach, cities 
which differ in population size by only 2000 inhabitants, feature in 28% more test 
items (mostly as a pair together) than the average, and in 62% more test items than 
they appear in within the extreme Reciprocal-Skewed environment (this accounts 
for the blips to the right of center of the plot of the two Similarity Skew environ-
ments shown in Figure 2). These differences in environment structure are reflected 
in the fact that some cues respond differently to manipulations which appear su-
perficially similar. For example, the Soccer cue gains validity under Difference and 
Reciprocal Skew but loses it under Product and Similarity Skew (see Fig. 4). Thus 
the apparent similarities between environments are perhaps not enough to explain 
the manner in which algorithm performance varies with frequency structure. 

In line with the third explanation for environmental impacts on performance 
given at the beginning of this section, it could be the case that the arbitrary set of 
nine cues upon which the algorithms must base their judgements favor certain city 
pairs over others. Perhaps we have provided no cues which correctly discriminate 
between small cities, or between similarly sized cities. This type of explanation 
draws attention to the fact that in structured environments, not just the predict-
ive validity of a cue, but where that validity stems from in the space of possible 
problem items, is important. In order to assess the relevance of this argument, we 
need to know whether the nine cues available to the algorithms in this study are 
representative of the 283 logically possible ways in which a binary cue can apply to 
83 objects. 

The space required to plot each of these possible cues is prohibitive, but we can 
expect to approximate the qualitative results by carrying out the same process for a 
toy problem of five objects, and hence 25 = 32 possible cues (Figure 7). There are 
4 + 3 + 2 + 1 = 10 possible pairwise comparisons between five objects (ignoring 
order). In order to represent the manner in which a cue’s performance is distributed 
across this space of possible comparisons we plot the lower left half of a 5 × 5 mat-
rix containing the outcome of each comparison. Where a cue fails to discriminate 
between a pair of objects the cell is left blank; correct discriminations are shown in 
grey; incorrect discriminations are black. Taking the right angle as the origin, cells 
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Figure 7. There are 32 possible ways in which a binary cue can apply to five objects, A–E. The order of the objects on the criterion dimension is described 
by the inequality A>B>C>D>E. Each of the 32 numbered triangles depicts the judgements made between all possible pairs of objects on the basis of the 
corresponding cue shown in the table above. Judgements may be correct (grey) or incorrect (black); a blank cell indicates that a cue does not discriminate 
between the pair of cities involved in the judgement. 
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are indexed by the coordinate (x, y) with object value on the criterion decreasing 
with increasing x and increasing with increasing y. This ensures that cells near the 
right-angle of the triangle represent comparisons between objects with dissimilar 
values on the criterion (e.g., A vs. E), whereas cells near the hypotenuse represent 
comparisons between objects with similar values on the criterion (e.g., B vs. C). 
Cells in the upper corner represent comparisons between pairs of objects which 
both have high values on the criterion (e.g., A vs. B), whereas cells in the lower-
right corner represent comparisons between objects which both have low values on 
the criterion (e.g., D vs. E). 

The first thing to note about the distribution of possible cues is that there are 
far fewer of them than there are possible ways of coloring the cells of one of the 
triangles used to represent each cue (i.e., 310) This indicates that the nature of 
the problem is constraining the kind of cues that are possible. For example it is 
impossible for one cue to either deal correctly with all possible comparisons or 
deal incorrectly with all possible comparisons (i.e., no triangle is entirely grey or 
black). We can see that whilst cues exist which correctly discriminate large cities 
from small cities (i.e., correctly deal with cells in the right angle of the triangle) and 
correctly discriminate amongst large cities (i.e., the upper corner), or small cities 
(the lower-right corner), there are no cues which correctly discriminate amongst 
many similar cities (i.e., the cells lying along the hypotenuse of the triangle are 
never entirely grey). These are facts about binary cues in general, and thus will 
apply to a wide range of environments. 

However, it is clear that this reasoning does not straightforwardly apply when 
continuously valued cues are available to an algorithm which is capable of us-
ing them. One continuous cue is sufficient to accurately discriminate between all 
adjacent objects. Furthermore, a discrete cue with n possible values is capable 
of distinguishing between all of the adjacent pairs of n objects. A discrete cue 
with a valency of n/2 is able to correctly make half of these pairwise comparisons 
without incurring error on the remaining pairwise comparisons between adjacent 
objects. Two such cues would thus be sufficient to achieve perfect performance on 
the leading diagonal of a problem’s triangle diagram. 

With this understanding of the space of possible cues in hand, we are in a pos-
ition to assess the representativeness of the cues made available to the algorithms 
in the German Cities Problem. The set of cues used in this problem were collected 
from relevant almanacs containing data on German cities (Ulrich Hoffrage and 
Ralph Hertwig, pers. comm., 1999). As such the cues are a relatively representative 
sample of the kind of facts people might know about cities. The manner in which 
correct and incorrect judgements are distributed over the space of possible compar-
isons for each cue is plotted in Figure 8 according to the same principles described 
above for the five-object case. The cues involved in the German Cities Problem tend 
to allow discrimination amongst the larger cities, and between larger and smaller 
cities, but fail to discriminate correctly amongst similarly sized cities, or amongst 
small cities. The first of these deficiencies stems from the logical constraints of 
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Figure 8. Judgement distributions for each of the nine cues made available to the de-
cision-making heuristics in the German Cities Problem. Each triangle represents all possible 
pairs of cities (because pair order is irrelevant, the upper half of each matrix is redundant, and 
hence omitted). Cities are arranged in order of increasing population size from left to right and 
top to bottom. Cues are arranged in order of increasing validity in a flat environment. Grey 
indicates correct inferences, black indicates incorrect inferences, and cues fail to discriminate 
in the remaining instances. 

pairwise choice and binary cues. As just argued for the five-object case, there 
simply do not exist cues which correctly deal with many comparisons between 
objects with similar values on the criterion dimension. In order to accurately deal 
with each comparison along the hypotenuse of the triangle diagrams presented 
here, 83 binary cues must be consulted. 

In contrast, the fact that the cues available to the algorithms facing the German 
Cities Problem do not tend to discriminate amongst small cities, is not a result of 
some constraint on binary cues. This deficiency is due to this set of nine cues being 
a biased sample of logically possible cues. Is there an explanation for this bias, or 
must it be attributed to the vagaries of sampling error? There are reasons to believe 
that the former is most likely. 
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Whilst there may exist cues which discriminate amongst smaller cities, they are 
unlikely to be recorded in almanacs, which, since larger cities are more interesting 
to their readers, tend to record facts which are true of large cities, and false of small 
ones. In addition, these facts are not true of every large city, but tend to be false 
of almost every small city, ensuring that they tend to discriminate amongst large 
cities as well as between large cities and small cities, but not to discriminate well 
amongst small cities. 

Thus, randomly sampling cues from those made available in the public domain 
will tend to result in a set of cues which is not representative of the space of possible 
cues, but which is biased towards those cues suitable to the structure of the problem 
which they have been selected for. This set of cues will not be able to accommodate 
a manipulation of environment structure, if this manipulation opposes the natural 
structure of the problem responsible for their existence in the public domain. In 
skewing the German Cities Problem in the direction of small population size, we 
have opposed the natural tendency for large cities to be more frequently reasoned 
about and discussed. As a result, the validity of cues taken from almanacs has 
tended to fall under Reciprocal Skew. 

This argument does not apply solely to the German Cities Problem, but in prin-
ciple can be generalized to any decision problem. Well adapted decision makers 
will tend to recognize and attend to cues which are well-suited to the predictive 
demands of the problem as influenced by its frequency structure and significance 
structure. This implies that, to the extent that such cues are logically possible, the 
cues used by such decision makers will tend to discriminate correctly between 
frequent and/or significant pairs of objects, possibly at the expense of rare and/or 
insignificant pairs. However, such a selection of well-adapted cues will not ne-
cessarily support performance on a differently structured decision problem. More 
specifically, if a decision problem is artificially skewed in favour of precisely those 
items which are insignificant in the natural decision-making problem, natural cues 
will tend to be unable to cope with this manipulation. For the German Cities Prob-
lem, this inability to cope with unnatural problem structure is manifested in the 
poor performance of algorithms in the Reciprocal Skew conditions. 

In concert, the effects outlined above ensure that the structure of the nine cues 
made available to algorithms in the German Cities Problem favours environments 
where they are more often called on to choose between pairs of large cities, or 
between large and small cities (Product and Difference Skew, respectively). For the 
same reasons, these algorithms will tend to perform poorly when forced to choose 
more often between small or similarly sized cities (Reciprocal and Similarity Skew, 
respectively). These general trends should apply to any binary-cue-based choice 
environment where alternatives at one end of the criterion dimension are more 
important or frequent than those at the other end. 

In summary, the variation of algorithm performance with environment struc-
ture can be traced to several sources. First, some classes of frequency skew are 
inherently difficult to accommodate due to the nature of binary cues and the pair-
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wise choice paradigm. This argument accounts for the reduced performance on 
Similarity-Skewed environments. Second, some classes of frequency skew are dif-
ficult contingent on the cues available. This argument accounts for the reduced per-
formance on Reciprocal-Skewed environments. Third, some algorithms are more 
sensitive to environment structure than others and are thus more likely to accom-
modate particular manipulations. The heuristics assessed here vary in their sens-
itivity to environment structure, and this sensitivity manifested itself in differ-
ences in the size of the advantage one algorithm achieved over another in different 
environments. 

3.5. CONCLUDING THOUGHTS ON FEQUENCY STRUCTURE 

By employing the German Cities Problem as a toy environment, we have shown 
that frequency structure impacts on the performance of decision-making algorithms. 
The character of this impact is complex. The presence of environment structure 
demands that decision-makers trade off general performance against performance 
on important subsets of test items. As a result, not only the validity of a cue, but the 
source of this validity is of importance to decision makers. Cues which gain their 
validity from frequent test-items are more useful than equivalent cues which gain 
their validity from rare test-items. 

Furthermore, environment structure interacts with the necessary and contin-
gent characteristics of a decision problem, and the strengths and weaknesses of 
a particular algorithm, to influence the performance of that algorithm. 

4. Significance Structure 

As well as differing in their relative frequency, naturally occurring problems differ 
in their relative significance. Consider a list of decisions which might be faced on 
the way to work: Which tie should I wear? Should I walk to the bus stop or ride my 
bicycle? Which bus should I catch? Is it safe to cross the road? How fast should 
I walk? How fast is that car approaching? Should I jump left or right? How am I 
going to make that 9:15 meeting now? 

Clearly these dilemmas differ along many dimensions; some are leisurely, some 
pressing; some are conscious, some unconscious; some are casual, some weighty. 
Here we will consider the effects of variation in the importance or gravity of de-
cision problems on the structure and performance of decision-making mechanisms. 

There are two ways in which the significance structure of a decision problem 
can be mischaracterized. First, the goal of the decision-maker may be miscon-
ceived. For example, doctors may be assessed on the accuracy of their diagnoses 
when what is significant to them is not forming an accurate judgement of what ails 
a patient, but prescribing measures which will alleviate this ailment. Whilst correct 
diagnoses are clearly a step towards this goal, they do not constitute it. There may 
be diagnostic errors which have no effect on a doctor’s prescription because the 
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confounded conditions demand the same treatment (see Connolly, this issue, for 
discussion along these lines). Similarly, the prescription of an incorrect treatment 
regime may, nonetheless, sometimes result in a cured patient (e.g., prescribing a 
course of vitamin supplements, complete rest and avoidance of dairy products, 
when the correct treatment was merely relaxation). Mischaracterising the aims of 
the decision maker leads to a misunderstanding of what counts as success and what 
counts as error. 

The second, and related, manner in which significance structure may be mis-
construed is in failing to appreciate that different decision problems differ in their 
significance to the decision maker, i.e., failing to discriminate between incon-
sequential decisions and those of much greater significance. A doctor confronted 
with what appears to be a case of influenza faces a decision problem which differs 
from that of a colleague encountering what appears to be a case of meningitis. Er-
rors in treating such cases would have radically different consequences. Assuming 
that a doctor will not treat his patients with 100% accuracy, it is of the utmost 
importance that the errors which are made are distributed amongst the less im-
portant cases rather than those involving life-threatening illnesses. Indeed, it may 
be necessary to trade off accuracy in general against accuracy over an important 
subset of decision items (Sober, 1994). Assessing a doctor’s performance using a 
metric which is insensitive to differences in significance will fail to capture this 
trade-off. 

In general, a problem’s significance structure is the manner in which the dif-
ferent decision items which constitute the problem differ in terms of their con-
sequences for the decision maker’s goal. For dichotomous decision problems such 
as the ones considered here, in which a test item’s significance can be opera-
tionalized as the difference in value between the two possible outcomes of the 
decision regarding that item, significance structure describes the manner in which 
this difference varies across the space of possible test items. 

4.1. THE MUSHROOM PROBLEM 

Imagine a fungivorous forager which, throughout its lifetime, encounters mush-
rooms, one after the other. Whilst some of these mushrooms are good sources of 
valuable nutrition, others contain damaging toxins. When confronted by a mush-
room, the forager must decide whether to eat it, or reject it in favor of a safe but 
mediocre food source assumed to be ever present in the forager’s environment. The 
forager must make its decisions on the basis of binary cues which it is sensitive to, 
and which together describe each mushroom, for instance, odorous versus odorless, 
colorful versus dull, and so on. 

The significance of these decisions will vary across the space of mushrooms 
liable to be encountered by a forager. How will this variation impact on the success 
of the different foraging strategies that such a forager might employ? In order to 
answer this question we simulated such a forager, and explored how the perform-
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Figure 9. The appearance of each mushroom is characterized by 20 dichotomous cues. The 
rates of Hits, Misses, False Alarms and correct Rejections have been calculated across the en-
tire set of 8124 mushrooms. Hits are cases in which a cue correctly indicates that a mushroom 
is edible. Misses are cases in which a cue incorrectly indicates that a poisonous mushroom 
is edible. False Alarms are cases in which a cue falsely indicates that an edible mushroom is 
poisonous. Correct Rejections are cases in which a cue correctly indicates that a mushroom is 
poisonous. Cues are shown ordered by their Validity, where Validity=Hits+correct Rejections. 

ance of various foraging strategies was affected by manipulation of the significance 
structure of the artificial mushroom environment it inhabited. 

We utilized Schlimmer’s (1987) database of 8124 different mushrooms from 23 
species within the Agaricus and Lepiota families (available from the University of 
California, Irvine Machine Learning Repository; Blake et al., 1998). Each mush-
room was described using 20 binary cues (dichotomized versions of the original 
data), as shown in Figure 9. Of the 8124 mushrooms, 4208 (51.8%) were classified 
as edible, whereas 3916 (48.2%) were classified as poisonous. The rates at which 
each cue is able to distinguish poisonous from edible mushrooms can be captured 
by four values: Hit rate, Miss rate, False Alarm rate, and Correct Rejection rate. 
These rates correspond to the cue’s tendency to correctly or incorrectly indicate 
edible mushrooms, and incorrectly or correctly indicate poisonous mushrooms re-
spectively, and are reported in Figure 9. A cue’s validity can be calculated as the 
proportion of correct inferences it makes, i.e., as the sum of its hit rate and correct 
rejection rate. 

The significance structure of this decision problem can be manipulated by defin-
ing different payoff matrices governing a decision maker’s performance. Figure 10 
depicts the four significance structures we explored. The first represents a scheme 
which assumes no significance structure exists. A decision maker receives a point 
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Figure 10. Four payoff matrices determining the significance structure of the Mushroom 
Problem. Each cell contains the points awarded for an individual decision. Dashes in the Odor 
matrix indicate that no mushrooms were present in a particular cell. 

for each positive response to an edible mushroom and each negative response 
to a poisonous mushroom, and no points for any other responses. This scheme 
rewards accurate classification and is termed Orthodox since accuracy metrics of 
this type dominate much of decision-making psychology. A student being tested 
on his knowledge of mushrooms might be assessed in this way — the student is 
sent out into the environment with two baskets, one labeled edible, one labeled 
poisonous. Upon his return, a teacher awards a point for every mushroom that the 
student has placed in the correct basket. 

This Orthodox significance structure treats all successes as equivalent and com-
mensurate, and all errors likewise. However, a forager actually consuming or re-
jecting mushrooms has not achieved its goals to the same extent by rejecting a 
poisonous mushroom as by consuming an edible one. Although these are both 
appropriate behaviors, in the latter case the forager has gained valuable nutrition, 
in the former it has avoided being poisoned. Similarly, for such a forager, the con-
sequences of the two classes of possible error differ radically. Whilst the rejection 
of an edible mushroom incurs an opportunity cost, the consumption of a poisonous 
one incurs the debilitating effects of whatever toxin the mushroom contains. 

The second payoff scheme attempts to capture this significance structure to a 
greater extent through awarding points for eating edible mushrooms, deducting 
points for eating poisonous mushrooms, and awarding a negligible amount for 
rejecting mushrooms in favor of the alternative mediocre foodstuff. The payoff 
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matrix is constructed such that eating all mushrooms achieves, on average, the 
same score as rejecting all mushrooms. This scheme can be considered to offer the 
forager the choice between a risky, but potentially high value food item (the mush-
room) and a safe, but relatively low value food item (the alternative). It is termed 
Flat, since each poisonous mushroom and each edible mushroom are equivalently 
poisonous or nutritious. 

The two environments described so far can be adequately captured by a signal 
detection paradigm. In varying the points awarded for eating and rejecting mush-
rooms which are poisonous or edible we have been defining the costs and benefits 
of the four cells in a signal detection matrix — hits, misses, false alarms and correct 
rejections. 

However, significance structure can be finer grained than the signal detection 
picture implies. In the third environment, termed Odor, the value of consuming 
edible mushrooms and the cost of eating poisonous mushrooms is correlated with 
their odor. Whilst the fungivore can discriminate between odorous and odorless 
mushrooms, the significance of a decision involving a particular mushroom de-
pends on whether the mushroom smells ‘foul’, ‘fishy’, ‘pungent’, and so forth, that 
is, on features which are not directly available to the forager, but may be recover-
able from combinations of the dichotomous cues which are available. Within this 
environment, the costs and benefits of hits and misses vary systematically across 
the space of decision items. 

Furthermore, significance structure can sometimes be difficult to capture in the 
terms of signal detection. For example, in reality poisonous mushrooms may be 
more dangerous than the deduction of points implies. The fourth environment 
is identical to the Flat environment save that the consumption of any poisonous 
mushroom results in the death of the fungivore, that is, an immediate and irrevers-
ible assignment of a score of zero points to the forager. This Lethal environment 
ensures that successes and failures cease to be measured in commensurate ways. 
No amount of edible mushrooms can be eaten to offset the consumption of a leth-
ally poisonous mushroom. This is indicated in Figure 10 by assigning a utility of 
negative infinity to the miss cell of the Lethal payoff matrix. 

These four environments demonstrate the range of possibilities that a problem’s 
significance structure can cover. Real decision problems can be expected to exhibit 
significance structures which are more complex still than those explored here since 
neither options, nor the evidence upon which to decide between them, need be 
binary in nature; further, differing outcomes may not be as easily reducible to a 
single dimensional of utility. In the next section we assess the effects that the four 
variations of significance structure have on the performance and structure of a class 
of simple decision making algorithms. 

We can make some general predictions regarding the effects of these manip-
ulations. For instance, those algorithms tailored to an inappropriate significance 
structure should tend to be outperformed by those which are appropriately tailored. 
In addition, algorithms tailored to the Lethal environment should be conservative in 
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Figure 11. Each cue is treated in one of seven ways. The presence or absence of a cue can 
prompt a forager to reject (cross) or accept (tick) a mushroom, or to check the next cue (?). 
Notice that since, across the entire population of mushrooms, the presence of each cue tends 
to indicate edibility, high-performance foragers might be expected to utilize rules 5, 6, and 7 
more than 1, 2, and 3. Rules 3 and 5 always stop search since they propose a definite action 
based on the presence or absence of the cue they apply to. Rule 4 ignores the cue it is applied 
to. 

their food choice, whilst those tailored to the Flat or Odor environments should tend 
to make errors within a subset of insignificant mushrooms in comparison to those 
algorithms tailored to the Orthodox environment, for whom one error is equivalent 
to any other. 

4.2. THE ALGORITHMS 

Here we explore a class of lexicographic decision algorithms. Like Take The Best, 
described above, these decision heuristics treat evidence one piece at a time and 
make a decision based on the first piece of evidence to suggest a course of action 
other than checking for more information, i.e., the first piece of information that 
allows a choice to be made. In this case the evidence is in the form of binary 
cues which are consulted in some order (tied ranks are possible in which case the 
tied cues are consulted in random order). Each cue is associated with a stopping 
rule. This rule determines whether the presence or absence of the cue leads to the 
forager eating or rejecting the mushroom, or to the forager consulting the next cue. 
We model seven different stopping rules (Figure 11). If an algorithm checks all 20 
cues without making a decision, the action taken is determined by a biased coin 
toss. 

To understand how significance structure can interact with the structure of de-
cision mechanisms and affect their performance, we will focus on this example 
task to find and compare strategies which perform well within each of the four 
environments described above. We cannot assess each member of the class of 
lexicographic rules since, given that cue ranks may be tied, there are over 20! or-
derings of cues and each ordering can be governed by 720 combinations of stopping 
rules. To find lexicographic algorithms which suit the Mushroom Problem under a 
particular significance structure, we implemented a form of parallel search inspired 
by natural evolution. 

The genetic algorithm we used (Goldberg, 1989; Holland, 1975; Mitchell, 1996) 
started with a population of 1000 randomly generated algorithms and assessed the 
performance of each on the Mushroom Problem under a particular significance 
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structure (i.e., in a particular environment). Each assessment involved the particular 
algorithm encountering 100 mushrooms drawn at random from the population of 
8124, eating or rejecting each mushroom, and gaining or losing points as a res-
ult. Once each of the 1000 algorithms was assessed, a new population of 1000 
algorithms was generated by allowing the better performing algorithms to ‘repro-
duce’, that is, to be copied into the next generation. This copying procedure was 
subject to a small chance of error which introduced ‘mutations’ into the strategies. 
The newly generated population of offspring algorithms was then assessed as be-
fore and the process was repeated until 5000 generations of simulated evolution 
had taken place. 

As a result of this assessment, reproduction, and mutation cycle, the population 
of 1000 algorithms became better and better adapted to the problem it faced. Over 
many thousands of generations performance increased as the algorithms converged 
on successful orderings of cues and appropriate stopping rules for these cues. 

In each of the four environments depicted in Figure 10 we assessed 20 inde-
pendent populations of 1000 algorithms each for 5000 generations of simulated 
evolution. During reproduction, there was a 1 in 100 chance that each of an al-
gorithm’s parameters might be mutated. Mutations, when they did occur, consisted 
of (i) a cue’s rank being replaced by a random value drawn from the set {0.5, 1, 
1.5...20, 20.5}1 , (ii) a cue’s stopping rule being replaced by one drawn at random 
from the seven possible rules, or (iii) a strategy’s biased coin being replaced by a 
coin with bias drawn randomly from the range [0,1]. 

For each of the four environments, the top five (0.5%) foragers from each of 
the 20 populations at generation 5000 were collected, and their long-term mean 
performance over 10 000 lifetimes (i.e., 1 000 000 mushrooms) was calculated. The 
best such long-term mean performance was recorded. Algorithms which failed to 
achieve a long-term mean performance within 5% of this threshold were discarded. 

Duplicate equivalent strategies were then excluded. Strategies were deemed 
equivalent if they exhibited the same cue ordering and applied the same stopping 
rules to these cues, once redundant cues had been removed. Redundant cues were 
either those associated with stopping rule 4, those which were never consulted 
because a cue associated with rule 3 or 5 preceded them in the cue order, or those 
which, over the course of 10 000 lifetimes, although consulted, had never stopped 
search. The remaining ‘elite’ strategies are thus unique and perform well in the 
environment to which they were adapted. 

4.3. THE ELITE STRATEGIES 

At this point, we will delve into a specific detailed analysis of the evolved strategies 
in these environments to see what general principles we can uncover and to demon-
strate the sorts of analytic approaches that can aid in such a search. A first indication 
that the strategies fit for one environment tend to differ from those fit for another 
is given by the Venn diagram in Figure 12 which demonstrates that of the 93 elite 
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Figure 12. Two elite strategies arose in both the Orthodox and Flat environments. The 
remaining strategies are unique to the environment in which they evolved. 

strategies found through evolutionary search, only two occurred in more than one 
environment. 

How do the elite strategies within one environment resemble each other, and 
how do they differ from those found in different reward regimes? The set of elite 
Orthodox strategies is heterogeneous in that many cues feature across the strategy 
set, and there is little consensus regarding which cues are useful and which are 
not (Figure 13). In contrast, the other three sets of elite strategies each feature a 
smaller number of cues, and exhibit a higher degree of consensus regarding which 
cues are important. Furthermore, each individual elite strategy in the Odor and 
Lethal environments tends to involve a slightly but significantly greater number of 
cues than elite strategies found for the other two environments (see Figure 14). 

In combination, these results suggest that as the significance structure of a 
decision environment becomes increasingly heterogeneous, i.e., the difference in 
significance between decision items increases, appropriate strategies become in-
creasingly homogeneous and less frugal in cue use. While the set of elite strategies 
for the Orthodox environment is wide and shallow, those of the Lethal and Odor en-
vironments are narrow and deep. This phenomenon is reminiscent of findings con-
cerning the differences between novice and expert decision makers. While novices 
tend to pursue a variety of strategies and as a group may attend to many different 
sources of potentially relevant information, experts are less variable in their ap-
proach to a problem, typically using just those few specific cues which are most 
appropriate to the decision problem at hand (Shanteau, 1992). 

The particular cues which feature in elite strategies for the Mushroom Problem 
can be regarded as falling into three groups. First, a few high validity cues (e.g., 
odor and bruises) show up in nearly every elite strategy, regardless of which en-
vironment the strategy has adapted to. Second, a set of auxiliary cues (e.g., stalk 
shape and gill-spacing) tend to feature in many of the elite strategies within a 
particular environment, but do not feature strongly in alternative environments. 
Third, the remaining utilized cues tend to be idiosyncratic to particular strategies 
within particular environments. It is clear that attending to high validity cues will 
be a useful part of most any decision strategy, and this observation can account for 
those cues that are utilized frequently across all environments. However, cues are 
not always utilized in proportion to their validity, even within the Orthodox envi-
ronment. Reasonably accurate cues may be utilized only vary rarely. For example, 
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Figure 13. The percentage of elite strategies which involve a particular cue in each of the four environments tested. Notice that a core group of high validity 
cues are attended to by many elite strategies regardless of environment (tall bars at left), while a number of cues are attended to by many strategies within 
specific environments (tall bars toward right), and remaining cues may be attended to by individual strategies within an environment (short bars). 
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Figure 14. The mean number of cues involved in the elite strategies from each of the four 
environments explored. This measure differs significantly across the four conditions (χ 2 -test, 
p < 0.001). Whilst neither Orthodox and Flat, nor Odor and Lethal differ from one another 
(χ 2 -test, p < 0.5), together Orthodox collapsed with Flat differ significantly from Odor 
collapsed with Lethal (χ 2 -test, p < 0.0001). 

gill-color, which is ranked fifth in terms of validity, is never involved in any elite 
strategy in any environments. 

Similarly, what marks particular cues as appropriate to particular environments 
can be hard to trace. The spore-print-color, habitat, and stalk-surface-below-ring 
cues are present in many of the elite strategies evolved within the Lethal envi-
ronment. However, these cues share few features which can explain their utility. 
They are mid-ranking in terms of validity. Although the stalk-surface-blow-ring 
cue enjoys a low Miss rate, which given the significance structure of the the Lethal 
environment would appear to be crucial to the utility of cues, the other two are 
unremarkable in this respect. However, spore-print-color and habitat do enjoy low 
rates of False Alarms. How are we to explain this curious choice of cues? 

Given that no cue perfectly predicts edibility across the entire set of mushrooms, 
no cue can initially be used by a lexicographic strategy to identify edible mush-
rooms without error. Since the consumption of a poisonous mushroom is fatal in 
the Lethal environment, every successful strategy there must proceed by rejecting 
subsets of mushrooms on the basis of cues which tend to make correct rejections 
and few false alarms. It is in this respect that spore-print-color and habitat (and 
odor and gill-size) excel, allowing a strategy to confidently reject mushrooms in 
the knowledge that those unrejected will for the most part be edible. A successful 
strategy will use early cues of this kind to filter out poisonous mushrooms such 
that those remaining can be split into definitely edible or possibly poisonous by a 
subsequent cue (e.g., stalk-surface-below-ring). 
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However, this rather involved explanation cannot enable us to state in advance 
which particular cues will be employed within elite Lethal strategies, but merely to 
offer a post-hoc analysis of successful strategies. Even in this respect the explan-
atory strategy is imperfect since it cannot account for why alternative cues were 
not utilized in place of those that were. For example, there exist cues with lower 
false alarm rates than spore-print-color and habitat which were not employed to 
any great degree. Why were these cues eschewed? 

In the Odor and Flat environments, the distribution of cue usage is even harder to 
understand. Gill-spacing, a popular cue in the Odor environment, is unremarkable 
save that it enjoys a low miss rate. However, there is little indication that misses are 
more crucial in the Odor environment than in the Flat environment, for instance, 
where the gill-spacing is never utilized by an elite strategy. 

The reason for the difficulty we experience in predicting and explaining the 
successful cue orderings stems from the properties of lexicographic strategies and 
our reliance on measures of cue performance derived from their application to the 
entire space of decisions. A strategy’s highest ranked cue will be consulted in all 
decisions. However, since this first cue may sometimes suggest a course of action 
(i.e., eating or rejecting) other than checking the value of the next cue, this next 
cue will only figure in a subset of the decision made by a strategy. Similarly, the 
third cue will be consulted for a subset of this subset — a subsubset of encountered 
mushrooms — and so on. As a result, characteristics of a cue which have been 
calculated across the whole environment, even if they suitably accommodate signi-
ficance and frequency structure, will tend to become less and less useful the deeper 
into a lexicographic strategy the cue is placed. 

Figure 15 demonstrates this problem by depicting the direction in which cues at 
each rank in a lexicographic strategy tend to be utilized. Recall that depending on 
the stopping rule employed in conjunction with a cue, its presence or absence can 
be the prompt for either positive (eat), negative (reject) or neutral (check next cue) 
behavior. Rules can be divided into those which tend to consider the presence of a 
cue to be an indicator of edibility and/or its absence to be an indicator of toxicity, 
and those for which the presence or absence of the cue indicates the opposite. One 
might expect that since, on average across the Mushroom Problem data set, the 
presence of each cue tends to indicate edibility, rules of the former kind might be 
more useful and hence better represented in the set of elite strategies. Figure 15 
shows that this is indeed the case early in a strategy. The first cue used by an elite 
strategy is always consulted in conjunction with a rule of this expected polarity. 
However, as we descend through the ranks, more and more of the cues begin to be 
associated with rules which operate in the opposite direction, until the polarity of a 
cue across the whole population of mushrooms ceases to be a predictor of rule use 
at all. 

The divergence between the performance of a cue over an entire space of prob-
lem items (global validity) and its performance across the subset of items which 
it actually encounters as a consequence of the cues preceding it in a lexicographic 
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Figure 15. The percentage of elite strategies which treat cues in the predicted (full bars) versus non-predicted (empty bars) direction across the rank order 
of cues, for the four environments. Because strategies vary in the number of cues they involve, columns vary in height. Notice that whilst early ranked cues 
tend to be treated in the predicted direction, the polarity of later cues is not predicted by global validity measures. 
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ordering (conditional validity) can be expected to increase with the rank of a cue, 
as mentioned above. In addition, the rate at which this divergence increases with 
rank can be expected to itself increase with the degree to which the significance 
or frequency structure of an environment tends to focus performance on fewer 
decision items. Consider that in the Orthodox environment, the contribution of 
each individual success or error on the part of a cue to its validity is equal. In con-
trast, within the Odor environment, there is a differential contribution of successes 
and errors to global validity. If a particular mushroom is highly nutritious, then 
successful cues will tend to be able to identify it as edible. The global validities 
of each of these cues will be inflated by their ability to correctly identify this 
mushroom. However, the conditional validity of only one cue will be increased 
by this ability. This is due to the fact that, in practice, only one cue will ever be 
used to identify this mushroom. The remaining cues which could also have made 
this correct identification have missed out. As a result, their conditional validities 
will not reflect their global validities, since whilst the latter measure takes their 
performance on every decision item into account, the former does not. 

This issue closely parallels the problem of model reduction in the statistical 
practice of multiple regression. Many independent variables (cues) may have high 
predictive power when fitted first, that is, exhibit a high global validity. However, 
when the complete model (all cues) is fitted, the predictive power of each contrib-
uting variable will be less than this first-fitting measure. Discovering the best set of 
predictors is a problem which cannot be solved by consulting global measures of 
validity alone. 

This problem has implications for lexicographic strategies which order their 
cues according to global measures of validity, as Take The Best does. Their per-
formance will tend to degrade in increasingly structured environments. This is 
shown to be true for the Mushroom Problem in Figure 16, which depicts the mean 
long-term performance of each set of elite strategies in each environment and the 
performance of a lexicographic strategy with cues ordered according to their global 
validities. This Take-The-Best- like strategy does indeed perform adequately in the 
Orthodox environment, but abysmally in the three structured environments. 

In addition, Figure 16 demonstrates that the ability of strategies evolved within 
one environment to perform in another varies in an intelligible manner. Whilst the 
elite strategies evolved within the Orthodox, Flat, and Odor environments perform 
at essentially the same level within the Orthodox and Flat environments, more of 
a difference is discernible within the Odor and Lethal environments between ‘for-
eign’ strategies and those indigenous to the environment. What this demonstrates 
is that elite strategies from the Orthodox, Flat, and Odor environments can distin-
guish roughly the same numbers of poisonous and edible mushrooms (hence their 
similar performance in the Orthodox environment); their performance differs in 
exactly which mushrooms are correctly dealt with and which are incorrectly dealt 
with (hence their varying performance in the Odor environment). Elite strategies 
evolved within the Odor environment are less likely to make errors when faced 
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Figure 16. The average mean long-term performance across the four environments of elite strategies evolved for particular environments and a 
Take-The-Best-like strategy (TTB) that uses cues in order of their global validity. Performance is plotted on the y-axis such that a score of 100 would 
be obtained by an omniscient and hence perfect forager. In the Orthodox and Lethal environments random behavior would achieve a score of zero. In the Flat 
and Odor environments, random performance would achieve a score of roughly 10. Whilst the more unstructured environments do not tend to discriminate 
between groups of elite strategies, the more structured ones favor indigenous elite strategies. TTB performs adequately in the Orthodox environment, but 
introducing significance structure results in severely reduced performance. 
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with mushrooms which are significant in their own environment, whereas the er-
rors made by elite Orthodox and Flat strategies are distributed over the space of 
mushrooms with no concern for their impact in the Odor environment. 

One possible explanation for the difference between novices and experts noted 
earlier stems from these observations. If novices do not appreciate the underlying 
significance structure of a domain, but experts do, one would expect that in addition 
to novices perhaps exhibiting a lower level of overall performance, their pattern of 
successes and errors would not match that of experts, who are more likely to gain 
their performance from correctly dealing with problems which they consider to be 
important and/or frequent. 

In the Lethal environment the difference between well-adapted strategies and 
interlopers is most evident. This results from the foreign algorithms’ tendency to 
tolerate a few misses, since their effects can be compensated for by an associ-
ated increased number of hits. In the Lethal environment this strategy is clearly 
maladaptive. 

The Take-The-Best-like strategy achieves its low level of performance in the 
Lethal environment by rejecting every mushroom in favor of the alternative food 
source. Its conservatism or risk aversion stems from the fact that since no single 
cue is capable of making error-free recommendations of edibility across the whole 
space of mushrooms, and errors of this kind are lethal, every cue is best used to re-
ject mushrooms (scoring on average 0.18 rather than negative infinity). As a result 
every cue is ranked equally and the absence of any cue is taken to be reason enough 
to reject any mushroom. Since each mushroom will lack at least one cue, every 
mushroom is eventually rejected by this strategy. (Similarly, within the Flat and 
Odor environments this strategy uses the presence of any cue as evidence in favor 
of eating a mushroom, since individually each cue, across the entire population, 
would best be employed as just such evidence. As a result, all mushrooms are eaten 
in these two environments and again roughly chance performance is achieved.) 

The approach of the elite Lethal strategies falls somewhere between this ex-
treme risk aversion and the blasé attitude to misses exhibited by elite foreign 
strategies. As discussed above, by using initial cues to exclude particular sets of 
mostly toxic mushrooms, elite Lethal strategies are able to use subsequent cues 
to accurately distinguish edible mushrooms from the remainder. In this way they 
achieve a remarkably competent performance, on average wrongly rejecting (false-
alarming) one in 10 edible mushrooms and wrongly accepting (missing) no pois-
onous ones. 

4.4. CONCLUDING THOUGHTS ON SIGNIFICANCE STRUCTURE 

Using an artificial foraging task we have demonstrated that manipulating the sig-
nificance structure of a decision problem can have important implications for the 
success of decision-making algorithms. We have shown that in order to understand 
the structure and performance of decision makers in structured environments an 
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appreciation of this structure is necessary. Significance structure will impact on 
the performance of strategies in complex ways. Specifically, using global measures 
of a cue’s performance will tend to become misleading as environment structure 
increases, because the disproportionate contribution of a small number of problem 
items to a cue’s effective performance will cause such global measures of a cue’s 
utility to deviate from the effective utility of a cue within a particular strategy. This 
was demonstrated for lexicographic cue orderings. Similar lessons are likely to 
apply to alternative decision heuristics. 

5. Overall Conclusions 

Rather than conceiving of decision-making success as equivalent to some general-
purpose measure of accuracy, the relevant measure is one which captures the ex-
tent to which a mechanism copes with its environment, meeting the goals of the 
decision-making agent. Such a measure must take into account the structure of the 
agent’s environment, including both the environment’s frequency structure and its 
significance structure. Employing this ecologically motivated form of assessment 
leads to a new vision of what constitutes a good decision making algorithm — sac-
rificing traditional notions of accuracy and generality can reveal the advantage of 
heuristics that evidence an increased ability to cope with specific real environments 
despite their failure to meet internalist criteria of rationality. 

Notes 
1Half ranks were employed so that cues could mutate to fall in between two previously adjacently 
ranked cues. After reproduction, ranks were renormalized so that they were again consecutive in-
tegers. 
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	not be suited to particular tins (such as oil drums, etc.) — its limitations make it ill-ﬁtted to certain problems but suitable for others. The extent to which an organism ﬁts its niche, or a mechanism matches the problem it faces, is the extent to which it meets the demands of its environment. 
	These considerations imply straightforwardly, that different environment structures will, by deﬁnition, favor different cognitive mechanisms. Thus, to evaluate the performance of these mechanisms, we have to take environment structure into account. But what is environment structure and how are we to measure it? Here we concentrate on the ramiﬁcations of two well-speciﬁed aspects of environment structure on the performance of cognitive decision-making mechanisms. 
	-

	To appreciate these two forms of environment structure, imagine that you are a university professor. Every once in a while, a student who has been offered a similar job by two universities approaches you for your advice. Which job offer should they accept? 
	(1) 
	(1) 
	(1) 
	Since neither job applications nor offers of employment are made at random, one might expect certain universities to feature more frequently than others in this kind of decision. 

	(2) 
	(2) 
	Since not all universities have equal status, some decisions of this kind may be more signiﬁcant than others. 


	Suppose that your students know that across all the possible pairs of universities, your advice is correct 80% of the time. Suppose that they also know that a colleague of yours is only correct 70% of the time. Should they approach you for advice rather than your less knowledgeable colleague? Not necessarily. Despite the higher accuracy of your advice across problems, the students may quite rightly reject you if the 20% of cases in which you err are the most or ones, while your colleague does not make these
	possible 
	important 
	frequent 

	Notice that in this example, general-purpose knowledge (high accuracy across possible test items) has been sacriﬁced for special purpose knowledge (high accuracy across frequent or signiﬁcant test items). Notice also that failure to appreciate either frequency or signiﬁcance structure in this example will lead observers to conclude that students are acting irrationally in choosing the less knowledgeable professor. 
	-

	Putting ourselves in the shoes of the job-seeking student, how should we assess the performance of each professor before deciding whose advice to heed? We might carefully select speciﬁc test items which we expect to best discriminate between hypotheses regarding the professors. Whilst patterns of success and failure across such a set of diagnostic test items may reveal facts about how the professors go about solving their task, the performance over such a set will not be representative of the professors’ pe
	-

	Similarly, assessing the performance of each professor using a multiple-choice paradigm in which (i) the answer to each test item is weighted equally, and (ii) 
	Similarly, assessing the performance of each professor using a multiple-choice paradigm in which (i) the answer to each test item is weighted equally, and (ii) 
	either every possible test item is presented once, or a uniform random sample of possible test items is presented, will also fail to capture the underlying structure of the problem, and therefore will misjudge any decision-making mechanism adapted to that structure. 

	Assessing each professor on a representative or ‘natural’ sample (Brunswik, 1955) of test items is the only way to reasonably decide between them. This approach to assessment and the role of environmental considerations derives from an ecological perspective on rationality which itself follows from the evolutionary biology considerations with which this paper opened. In the next section we present the foundations of this notion of ecological rationality, before turning to speciﬁc examples of frequency struc
	-

	2. Ecological Rationality 
	Consider two contrasting assumptions about how best to conceive of cognitive mechanisms. The ﬁrst stems from an observation about origins. 
	• 
	• 
	• 
	Assumption: processes of natural and cultural evolution (sometimes via the lifetime learning fashioned by these processes) have tailored the mind to ﬁt the demands and structure of its environment. Behavior must be adaptive, i.e., suited to its proper environment, to be successful. 


	This assumption invokes a natural process (evolution) and an externalist criterion of success (the environment). It has a direct implication. 
	• 
	• 
	• 
	Implication: the assessment of candidate cognitive mechanisms must be sensitive to facts concerning environment structure. 
	-



	The second conception of cognitive mechanisms considers them to approximate general-purpose, optimal (and ultimately mythical) devices. It is thus an assumption about goals. 
	-

	• 
	• 
	• 
	Assumption: minds are best understood as approximating a Laplacean su-perintelligence (Laplace, 1951), which will, by deﬁnition, achieve general-purpose, optimal performance in any situation, no matter how rare; for any price, no matter how costly; and for any reward, no matter how meager. 


	This assumption invokes an ideal, and implies internalist criteria for success. 
	• 
	• 
	• 
	Implication: general purpose performance cannot, by deﬁnition, rely upon assumptions about the problem to be faced, hence the behavior of candidate cognitive mechanisms should conform to internalist rational criteria, e.g., coherence, transitivity, etc., since it is through the adoption of these criteria that a superintelligence will achieve its optimal performance. 
	-



	Whilst this second, classically rational approach to cognition is somewhat of a straw man, the internalist criteria which it promotes are widespread within decision-making psychology and related ﬁelds, taking the form of prescriptive norms; Your Subjective Probabilities Must Sum to Unity! Be Transitive in Your Choices! Be Coherent! Be Consistent in Your Preferences! In contrast, the ﬁrst approach to 
	Whilst this second, classically rational approach to cognition is somewhat of a straw man, the internalist criteria which it promotes are widespread within decision-making psychology and related ﬁelds, taking the form of prescriptive norms; Your Subjective Probabilities Must Sum to Unity! Be Transitive in Your Choices! Be Coherent! Be Consistent in Your Preferences! In contrast, the ﬁrst approach to 
	cognition embraces an ecological perspective on rationality, dispensing with in-ternalist criteria in favor of an externalist performance metric. In the same way in which evolutionary biology assesses the ﬁtness of adaptations in terms of the extent to which they perform the task for which they were selected, ecologically rational reasoning is reasonable to the extent that it is successful within its proper environment. 

	The perspective on cognition afforded by the concept of ecological rationality is a powerful one. Understanding its rationale requires that certain lay terms be given technical meanings. Although space limitations prevent a full account of its derivation, a few of the more pressing issues will be brieﬂy addressed here (readers are directed to Millikan, 1984, for an account of the role of evolution in underwriting the attribution of functions to cognitive mechanisms). 
	ROXIMALITY AND PROXIHOOD 
	2.1. P

	First, the phrase ‘proper environment’ is used here (e.g., in the ﬁrst assumption above) in the same technical sense in which Millikan (1984, 1993) employs the term ‘Normal conditions’ to mean “the conditions to which [a] device ... is biologically adapted” (Millikan, 1984, p. 34). This biological adaptation is ultimately evolutionary, but may also involve learning, as in the case of a mechanism which has evolved to detect mates, but is calibrated through some period of juvenile experience. The nature of a 
	-

	Since our knowledge of past environments will generally be poor, establishing the structure of these environments with the degree of precision necessary in order to predict, in one fell swoop, the adaptations which resulted from them may be hard, if not impossible. However, taking as a working assumption the hypothesis that, whatever these environments were, they have shaped the character of extant cognitive mechanisms allows us to approach cognition and behavior as evidence from which to infer the adaptive
	Since our knowledge of past environments will generally be poor, establishing the structure of these environments with the degree of precision necessary in order to predict, in one fell swoop, the adaptations which resulted from them may be hard, if not impossible. However, taking as a working assumption the hypothesis that, whatever these environments were, they have shaped the character of extant cognitive mechanisms allows us to approach cognition and behavior as evidence from which to infer the adaptive
	-

	through a similar cycle, repeatedly revising the nature of a decision problem until the optimal solution to this problem matches the observed performance of the natural decision makers they are interested in. 
	-


	Second, in using terms such as ‘success’ and ‘task’ when describing the performance of a natural mechanism, we are eliding an important dimension. The manner in which these terms should be interpreted depends on whether one is concerned with explanations which are biologically or more . Whilst ultimately every biological adaptation has been selected for the task of effecting its own reproduction, with appropriate caveats, organisms and the organs they contain can also be considered to face more proximate ad
	-
	ultimate 
	proximate
	-

	However, establishing a proxihood relationship between some measure of successful reasoning and ultimate ﬁtness is not straightforward. For example, the capture of accurate information is often considered to be a good measure of reasoning success (e.g., Oaksford and Chater, 1994, 1996, but see also Klauer, 1999). In his model of animal communication, Grafen (1990) equates the success of a choosy peahen with her accuracy in capturing the mate value of her suitors. One might expect that to the extent that a r
	-
	-
	-

	For example, a decision-making mechanism used by a peahen to judge the quality of peacocks may provide equally accurate assessments in two cases, yet if the ﬁrst case involves a poor quality suitor and the second a high quality suitor, the value of these two pieces of equally accurate information will differ greatly. The ﬁrst assessment allows the peahen to conﬁdently reject a poor suitor, avoiding the costly mistake of making a long-term investment with a poor-quality mate. In contrast, the second assessme
	-

	These examples highlight the fact that it is the behavior which results from an organism’s reasoning rather than the reasoning itself which is the locus of selective pressure. Whilst accurate and error-free reasoning is clearly typically a 
	These examples highlight the fact that it is the behavior which results from an organism’s reasoning rather than the reasoning itself which is the locus of selective pressure. Whilst accurate and error-free reasoning is clearly typically a 
	conduit leading to adaptive behavior, it does not follow that ‘irrational’ reasoning must have negative consequences for the success of an organism’s behavior. As we move along the explanatory dimension from explanations of decision-making behavior in terms of some ultimate goal (reproduction) to explanations in terms of increasingly proximate goals (successful decision making of some kind) we do not ever reach a legitimate explanation of an organism’s behavior in terms of achieving the consistency, coheren
	-
	necessarily 


	For instance, in order to meet the criteria of classical rationality, one’s preferences must be transitive, that is, if one prefers A over B, and B over C, one must prefer A over C to remain rational. Reinforcement training of various animals demonstrates that they spontaneously develop novel transitive preferences when trained to make pairwise selections between items with adjacent ranks on some arbitrary scale (Delius and Siemann, 1998). That is, when trained to prefer A over B, B over C, C over D and D o
	-
	-
	exaptation 
	ad
	-
	aptation
	per se
	intransitivity 

	PTIMALITY AND ANALYSIS 
	2.2. O

	Friends of classical rational norms will respond at this point that these norms were never intended as prescriptive rules, but as descriptive tools. Since optimal performance will be achieved by an agent following the prescriptions of classical rationality, they serve a useful purpose in providing the means to calculate a benchmark against which natural performance may be measured. Whilst we as scientists can calculate this benchmark, there is no claim that cognitive mechanisms perform 
	Friends of classical rational norms will respond at this point that these norms were never intended as prescriptive rules, but as descriptive tools. Since optimal performance will be achieved by an agent following the prescriptions of classical rationality, they serve a useful purpose in providing the means to calculate a benchmark against which natural performance may be measured. Whilst we as scientists can calculate this benchmark, there is no claim that cognitive mechanisms perform 
	-

	any such calculation. The behavior generated by a rational cognitive mechanism is, however, expected to be well described, or at least approximated, by such optimal models. 

	We have no objection to this use of optimality modelling. However, it must be pointed out that from this perspective, the discovery that human reasoning fails to meet the internalist criteria of rationality in some situation (whether it be experimental or naturally occurring) should not necessarily be the cause for concern that it has appeared to be within the judgement and decision-making literature (e.g., Kahneman et al., 1982). If internalist rational criteria were never expected to be by cognitive mecha
	-
	im
	-
	plemented 

	Indeed, a tradition exists within behavioral ecology which treats experimental results not as revelatory of an animal’s rationality, but as indicative of its evolutionary history. For example, the ﬁeld of optimal foraging theory (Stephens and Krebs, 1986) experimentally assesses the foraging behavior of various species in an attempt to discover not whether they are smart or stupid, or rational or irrational, but what the selective pressures on foraging ability must historically have been for these species, 
	-

	The contrast between the approach of behavioral ecologists and that of decision-making psychologists is crystalized in their response to the possibility of ‘inappropriate’ probability matching in animals and humans (Goodie et al., 1999). The probability matching phenomenon is most straightforwardly presented in a case in which two sites which vary in the rate at which they yield food are attended to in proportion to these yields. Maximizing the consumption of food would be achieved by attending solely to th
	-
	-
	-

	ATIONAL SYNTHESIS 
	2.3. R

	Furthermore, although cognitive mechanisms can be expected to optimal solutions to the problems they have been adapted to, we cannot assume that they are also built from approximately rational building blocks. Once we have set aside optimality theories as a means to derive the contents of organisms’ heads, it is difﬁcult to see immediately what assumptions are justiﬁed when postulating the mechanisms which underpin adaptive behavior. An example from the study of vision highlights this problem. 
	approximate 
	-

	David Marr (1982) and J. J. Gibson (1979) developed contrasting approaches to solving the problem of how animals achieve visual perception. Marr’s computational approach yielded the pipeline model, comprising a series of modules each charged with performing a subpart of the entire task. Each subpart was considered by Marr to be the logical requirement of a system able to form a model of the world around it on the basis of an impoverished two-dimensional array of intensity values (i.e., light falling on a re
	-

	However, whilst Marr’s system was buildable and hence testable, Gibson’s theory offered almost no clues as to what might constitute the subparts of visual systems. Alluding to ‘resonating structures’ did nothing to operationalize his theory, which suffered as a result. For our present purposes, what is interesting about this example is that Gibson’s ecological considerations did not directly suggest candidate mechanisms in the same way that Marr’s computational approach did. Without ﬁrst principles from whi
	-
	-

	In Marr’s approach we can glean a clue as to a way forward. Although the processes involved in the pipeline were considered to be the logical precursors to establishing a three-dimensional model of the system’s surroundings which could be passed to a suitable spatial reasoning system, Marr did not derive the structure of the pipeline entirely from ﬁrst principles. Rather, several important empirical results from the neurobiology of vision (e.g., Hubel and Wiesel, 1959) inspired the design of some of the bui
	-
	-

	More generally, evolutionary processes can be expected to build complex cognitive as well as perceptual systems from combinations of building blocks, themselves the adaptive result of selective pressures. As such we should conceive of cognitive innards as assemblies of limited cognitive subparts, tinkered with and reassembled by mutation and selection until they ﬁt the environment to which evolution has adapted them. By using empirical evidence from the study of adults, children and other species (e.g., Cum
	-
	-

	For example, the recognition heuristic (Goldstein and Gigerenzer, 1999) is predicated on a fundamental psychological phenomenon, recognition memory. This phenomenon has been well studied by psychologists and animal behavior researchers. It clearly subserves much of our everyday behavior. The recognition heuristic utilizes recognition memory to guide decision-making behavior by exploiting the fact that recognition tends not to be randomly distributed across possible entities, but is typically concentrated on
	-
	-

	This process of , the recombination of empirically validated cognitive building blocks, has a counterpart in the ﬁeld of behavior-based robotics (Brooks, 1991a,b). Increasingly, roboticists interested in building intelligent control systems are coming to realize that problems which appear intractable from the perspective of control theory can be tackled effectively by assembling networks of competing and cooperating behavioral modules. Rather than providing this system with some governing module responsible
	rational synthesis
	-

	In addition, roboticists interested in using robotic systems to model natural systems have discovered that building robots from empirically validated building blocks can lead to new and interesting theories of animal behavior. Webb (1994, 1996) reports the use of a robot cricket to demonstrate that the phono-taxis achieved by natural female crickets when they approach calling males can be achieved with practically no cognitive mechanism at all, through relying on the acoustic properties of the cricket’s ear
	-

	A repeated ﬁnding within these related ﬁelds is that complex adaptive behavior can arise from the interaction between simple mechanisms and their environment. This observation formed the basis for Valentino Braitenberg’s (1984) synthetic psychology, the use of artiﬁcially constructed systems (in this case hypothetical ones) to explore the minimal properties required of systems before various intentional attitudes (fears, desires, beliefs, etc.) are attributable to them. The rational synthesis we employ invo
	-
	-
	-

	HE THREAT OF EXPLOITATION 
	2.4. T

	Our concern with the explanatory role of environment structure in accounting for the performance of a candidate cognitive mechanism has lead us to reject inter-nalist rational criteria as unnecessary for such explanations. For example, what use is transitivity across all choices a cognitive mechanism could ever be expected to make, for instance, if this transitivity is achieved at the expense of adequate response time on a few crucial choices? Might it not be better to sacriﬁce this property within a set of
	Yet the employment of internalist rational criteria in the judgement and decision-making literature is commonplace. Why is this the case? One answer is that if the domain to which a cognitive mechanism is expected to apply is unstructured, as it is by deﬁnition for the Laplacean Superintelligence, and as is often implied by the use of a ﬂat accuracy performance metric, then environmental considerations will appear superﬂuous. If success over here is just as good as success over there, then general performan
	Whilst an organism which fails to adhere to some internalist maxim exposes itself to exploitation in the form of an appropriate money pump or Dutch book (Schick, 1986), for example, if no such exploitatory device exists within the organism’s environment, or if the losses due to exploitation are more than made up for by the gains made in other situations, then there is no force to the internalist exhortations. In contrast, if there does exist an exploitatory entity leeching the irrational organism’s utility 
	Whilst an organism which fails to adhere to some internalist maxim exposes itself to exploitation in the form of an appropriate money pump or Dutch book (Schick, 1986), for example, if no such exploitatory device exists within the organism’s environment, or if the losses due to exploitation are more than made up for by the gains made in other situations, then there is no force to the internalist exhortations. In contrast, if there does exist an exploitatory entity leeching the irrational organism’s utility 
	-
	-

	demonstrate its irrationality. In this instance, the organism will be irrational by the lights of externalist ecological considerations — it will be unﬁt. 

	UMMARY 
	2.5. S

	To recapitulate, since organisms are adapted to ﬁt their environment by selective pressures, behaviors and the mechanisms which produce them are only intelligible . Cognitive mechanisms are bespoke mechanisms, tailored to ﬁt particular circumstances, they are ‘made to measure’. Whilst there may be general trends in dress-making or tailoring (i.e., preference for economy, goodness of ﬁt, quality of material, etc.), these are mere trends, not laws or truths. In the same way that opulent, wasteful, ill-ﬁtting,
	in context
	apriori 
	-
	structured 

	In the remainder of the paper we will explore two important kinds of environment structure which are well-deﬁned and hence measurable. Frequency structure describes the relative prevalence of different decision items within a decision domain. Signiﬁcance structure describes the relative importance of different decision items within a decision domain. Each class of structure will be explored through manipulating the structure of an artiﬁcial decision problem and observing the impact this manipulation makes o
	-
	-
	-
	-

	3. Frequency Structure 
	We deﬁne the frequency structure of a decision-maker’s environment as the relative frequency with which each test item is encountered by the decision maker. A ﬂat frequency structure implies that no test item is more likely to be encountered than any other. In contrast, a skewed frequency structure implies that some items are more likely to be encountered than others. 
	HE GERMAN CITIES PROBLEM 
	3.1. T

	Here we employ an arbitrary data set (ﬁrst reported by Gigerenzer et al., 1991) as an arena in which to explore the effects of varying frequency structure. The German Cities Problem is an inference task concerning the population sizes of a 
	Figure
	Each city either possesses (+) or does not possess (...) each of nine binary cues. Cities in possession of any cue tend to have a larger population size than cities lacking that cue. 
	Figure 1. 

	set of German cities. The task is to judge which is the larger of a pair of German cities. The cities involved are the 83 largest in Germany (all cities with population above 100 000 inhabitants in 1988). The information upon which the judgement must be based consists of nine binary cues (see Figure 1), for instance, whether the city has a soccer team in the top league of the Bundesliga (the German football league). 
	This task has previously been used as an inference problem with which to assess the performance of a range of decision-making heuristics (Gigerenzer et al., 1991; Gigerenzer and Goldstein, 1996, 1999; Hertwig, Hoffrage and Martignon, 1999). However, this previous research has proceeded with no attention to frequency structure, assuming that each comparison between a pair of cities occurs with equal frequency and thus contributes equally to a measure of decision-making performance. 
	-
	-

	Gigerenzer and Goldstein (1996) report that the recognition rates for these cities (i.e., the proportion of people claiming to recognize each city) increases with population size. On this basis we might assume that the actual frequency structure of this pairwise comparison task (if people encounter this problem at all) is not ﬂat, but that high population cities tend to be reasoned about more frequently than low population cities. This is clearly one manner in which the German Cities Problem environment cou
	-

	(1a) 
	(1a) 
	(1a) 
	Product Skew: the likelihood that a pair of cities will be encountered by a decision-maker is proportional to the of the city population sizes. 
	product 


	(1b) 
	(1b) 
	Reciprocal Skew: this is the complement of Product Skew, the frequency with which a pair of cities will be encountered being proportional to the of the city population sizes. 
	inversely 
	product 


	(2a) 
	(2a) 
	Similarity Skew: the likelihood that a pair of cities will be encountered by a decision-maker is proportional to the difference between the city population sizes. 
	inversely 


	(2b) 
	(2b) 
	Difference Skew: this is the complement of Similarity Skew, the frequency with which a pair of cities will be encountered being proportional to the between the city population sizes. 
	difference 



	Whilst we do not know whether one or any of these frequency structures characterizes the distribution of city-size comparisons that people might naturally face, these classes of skew have been chosen because each is probably representative of natural problems. For example, if one encounters entities (cities) at a rate proportional to their value on some dimension (population size), then Product Skew will describe the frequency structure of pairwise comparisons between encountered entities. Similarly, if com
	-
	some 

	For each class of frequency structure, we explore two degrees of skewness. 
	(1) 
	(1) 
	(1) 
	Mild: the most frequent city pair occurs 10 times more often than the least frequent. 

	(2) 
	(2) 
	Extreme: the most frequent city pair occurs 100 times more often than the least frequent. 


	In each environment the least frequent city pair occurs 10 times. For each environment, the proportion of comparisons in which each individual city takes part is shown in Figure 2. 
	-

	It is important to note that, rather than being interested in the problem of comparing city sizes itself, we are concerned with the inﬂuence of frequency structure on decision problems in general (but to make our points we will concentrate in depth on this one particular example). Indeed the German Cities Problem is one with perhaps little intrinsic import, serving here as a model, rather than an object of enquiry in its own right. 
	-

	Figure
	The distribution of test pairs across city size is shown for each of the four frequency-skewed environments in comparison to the default ﬂat environment. The 83 German cities are arranged on the -axis in order of increasing population size. The proportion of test pairs featuring each city is plotted on the -axis. 
	Figure 2. 
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	HE DECISION ALGORITHMS 
	3.2. T

	To explore the impact of environmental frequency structure on the structure and performance of decision mechanisms, we chose a small set of such mechanisms for comparison. The four mechanisms we use all make their choices on the basis of some set of the available cues, but they vary in the exact number of cues used and in the complexity of cue processing. The most sophisticated algorithm is multiple linear regression, which ﬁrst computes the optimal weights for weighting and combining (summing) all of the a
	-

	The second algorithm, called Dawes’s Rule, similarly uses all of the available cues, but it processes them in a rather less sophisticated fashion. Initially, the algorithm must compute the direction of association between each cue and the criterion value — that is, does the cue on average indicate a higher or a lower criterion value (so for example, does having a Bundesliga soccer team indicate a higher city size in over half of the city comparisons?). Then, to make each individual pair comparison, the numb
	-

	The last two algorithms take a different approach to decision making. Rather than combining all of the available cues in some manner, they consider cues one at a time, sequentially, until the ﬁrst cue that enables a decision to be made is found. This decisive cue will be the ﬁrst which discriminates between the two objects being compared, i.e., one object possesses the cue whilst the other does not. If possession of the cue is positively correlated with the criterion, the object in possession of the cue is 
	one-reason decision making 

	In particular, here we use the Take The Best algorithm, which orders cues by their validity — that is, by how often they indicate the larger criterion value in a pair of discriminated objects — so that the best cues are considered ﬁrst. Take The Best is thus sensitive to the direction strength with which cues indicate the criterion values, but its sensitivity to cue strength only extends to their ranking, not to their precise differences in strength. (Hence, the strength or validity of two cues could change
	and 

	We also compare the effectiveness of an even simpler one-reason decision algorithm, the Minimalist heuristic, which examines cues in a random order, stopping when it stumbles upon the ﬁrst cue which discriminates between the objects. Minimalist is thus not sensitive to cue strength at all, but only to what direction the cue points with respect to the criterion (that is, whether it indicates higher or lower criterion values, or in other words, whether its validity is above or below 0.5). And yet despite its 
	-
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	HEIR PERFORMANCE 
	3.3. T

	Each algorithm was parameterized (e.g., cues ordered or weighted) on the basis of the skewed environment within which their performance was to be assessed. This ensures that each algorithm was appropriately matched to its environment. Each algorithm was then made to judge which was the larger of every possible pair of cities and their average performance across the entire set of pairs was computed. However, some pairs of cities were presented multiple times according to the frequency structure of the enviro
	-

	Whilst the performance of each algorithm relative to the others remained stable across environments, the absolute performance (i) increased with increasing Product Skew, (ii) increased with increasing Difference Skew, (iii) decreased with increasing Similarity Skew, and (iv) decreased with increasing Reciprocal Skew (Figure 3). It appears reasonable that choosing the larger of two similarly sized cities will be harder than making the same judgements concerning pairs of dissimilar cities, and perhaps that in
	-

	The source of changes in the algorithms’ performances clearly lies in changes in both the predictive validities and the discrimination rates of the cues made available 
	Figure
	The performance of the four simulated algorithms in each of the eight structured environments is plotted in comparison to the default ﬂat environment (middle of each panel). Whilst the relative success of algorithms with respect to each other changes little, their overall performance is dependent on the type and degree of skew exhibited by the environment. 
	Figure 3. 

	514 
	Figure
	Cue Validity, calculated across all test pairs as (number of correct judgements)/(number of test pairs), varies with environment structure. A cue which correctly predicts a frequent test pair enjoys higher validity. Groups of cues respond similarly to changes in frequency structure. 
	Figure 4. 

	Figure
	Discrimination Rate, calculated across all test pairs as (number of discriminations made)/(number of test pairs), also varies with environment structure. A cue which discriminates a frequent test item enjoys a greater discrimination rate. 
	Figure 5. 

	to the algorithms (Figures 4 and 5). Validity is deﬁned as the ratio of the number of correct judgements made by a cue to the total number of judgements made by a cue, whilst discrimination rate is deﬁned as the ratio of the number of judgements made by a cue to the total number of judgements sought from a cue. Some cues respond positively to a certain frequency skew, tending to correctly predict a greater proportion of judgements as those comparisons that the cue discriminates correctly become increasingly
	-
	typology 

	In summary, we have seen that frequency structure affects the performance of decision-making algorithms. Despite algorithms having been conﬁgured to suit each structured environment, systematic differences in their performance were induced by skewing the frequency structure of these environments in particular ways. The general drop in performance induced by Similarity Skew and Reciprocal Skew coupled with the general increase in performance induced by Product Skew and Difference Skew indicate that the forme
	-
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	XPLAINING PERFORMANCE IN TERMS OF ENVIRONMENT STRUCTURE 
	3.4. E

	There are several possible explanations for the changes in performance induced by changes in environment structure in this domain, some of which are speciﬁc to the German Cities Problem and some of which are more general. The ﬁrst and most general is that there exist properties inherent to dichotomous-cue pairwise choice problems which imply that particular kinds of frequency structure will be more difﬁcult than others. The second is that underlying properties of the decision criterion of this particular pr
	-

	A combination of these explanations seems most likely to account for the results reported above. However, it is worth noting some points in favor of this ﬁrst explanation. Most importantly, all four decision heuristics responded similarly to the changes in environment structure that we imposed. These heuristics differ in many ways, yet beneﬁt or suffer from the same kinds of environment structure. Furthermore, the effects on performance induced by changes in environment structure occur irrespective of the s
	-
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	Figure
	Take The Best utilizes cues in an order determined by their validities. Here the manner in which this cue order changes as the result of frequency structure affecting cue validities is shown for the nine environments. 
	Figure 6. 

	For example, the simplest of the strategies tested, Minimalist, is affected by changes in environmental frequency structure, tracking the performance of the other algorithms (although always at a slight distance), despite it not being sensitive to most of these changes. Recall that Minimalist uses the polarity of each cue to govern its inferences. As such, this strategy treats environments identically unless the polarity of at least one cue differs between them (e.g., a cue which predicted high population s
	For the frequency structures explored here, out of the nine cues in eight skewed environments only ﬁve reversals of predictive validity occurred. Four of these reversals affected the East Germany cue, whilst the remaining one affected the Industrial Belt cue. The two cues which suffer validity reversal have the lowest validity of the nine available, ensuring that their reversal makes little impact on the performance of the algorithm. This is not surprising since the polarity of cues with poor validity will 
	-

	This type of analysis draws attention to the sensitivity of algorithms to changes in their environment. Minimalist and Dawes’s Rule only accommodate changes in the , of cues. Take The Best is only sensitive to changes in cue validity which are large enough to cause changes in the rank order of cues by their validity (see Figure 6). Multiple regression is in principle sensitive to any change in cue 
	This type of analysis draws attention to the sensitivity of algorithms to changes in their environment. Minimalist and Dawes’s Rule only accommodate changes in the , of cues. Take The Best is only sensitive to changes in cue validity which are large enough to cause changes in the rank order of cues by their validity (see Figure 6). Multiple regression is in principle sensitive to any change in cue 
	polarity

	validity. Given these facts, it is understandable that the difference in performance between a sensitive algorithm and a less sensitive algorithm increases with the performance of the former, i.e., the degree to which a sensitive algorithm outstrips its less sensitive competitors increases with the degree to which the sensitive algorithm can exploit the structure of its environment. 
	-


	This can be seen by looking at the difference between the performance of the most sensitive algorithm, multiple regression, and that of the least sensitive, Minimalist, across all nine environments. This difference is impressively positively correlated with the absolute performance of multiple regression (=0.92). That is, multiple regression beneﬁts from its greater sensitivity to environment structure by exploiting this structure to a greater extent. Indeed all six such comparisons between algorithms are c
	-
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	r
	-
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	It is important to stress at this point that we are considering here only the performance of the four algorithms — that is, how well they can exploit the structure in a particular set of data from a particular environment. (This situation is also described as one in which the data set on which the algorithm is trained is the same as the data set on which the algorithm’s performance is tested.) In this case, the set of data being ﬁtted by the algorithms is the entire frequency-skewed set of all pairs of citi
	ﬁtting 
	-
	generalization 

	How can we test whether the changes in performance induced by our manipulation of frequency structure are not due to some facts peculiar to German Cities (and other related environments)? One clue comes from Figure 2, where it appears that Product and Difference Skew have qualitatively analogous affects on the frequency with which different cities appear in test items. Similarly, Reciprocal and Similarity Skew have comparable effects on these distributions. This could presumably account for the similarity i
	-
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	The similarity between Product- and Difference-Skewed environments, and between Reciprocal-and Similarity-Skewed environments, stems from the underlying structure of the distribution of population size across German Cities. Since the population of German Cities decreases roughly exponentially with rank, forming a so-called J-shaped distribution (see Hertwig et al., 1999), the largest cities (which feature most frequently in the Product-Skewed environments) are also very different from most of the other citi
	The similarity between Product- and Difference-Skewed environments, and between Reciprocal-and Similarity-Skewed environments, stems from the underlying structure of the distribution of population size across German Cities. Since the population of German Cities decreases roughly exponentially with rank, forming a so-called J-shaped distribution (see Hertwig et al., 1999), the largest cities (which feature most frequently in the Product-Skewed environments) are also very different from most of the other citi
	-
	-
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	in the Difference-Skewed environments. Similarly, the many small cities are similar in size to each other and hence are disproportionately represented in both the Reciprocal-Skewed and Similarity-Skewed environments. (If the frequency structure of each environment had been determined using the rank, rather than the real value, of each cities population size, these similarities would be markedly reduced since they rely essentially on the clustering of smaller cities and the isolation of larger cities along t
	-
	-


	Although pairs of the environments do indeed appear alike in their gross characteristics, Product and Difference Skew differ considerably in the extent to which the most common pairs are over-represented in comparison to the least common pairs. Furthermore, Reciprocal and Similarity Skew differ in that the latter features particular mid-sized cities far more frequently than the former. For example, in the extreme Similarity-Skewed environment, Münster and Mönchengladbach, cities which differ in population s
	-
	-
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	In line with the third explanation for environmental impacts on performance given at the beginning of this section, it could be the case that the arbitrary set of nine cues upon which the algorithms must base their judgements favor certain city pairs over others. Perhaps we have provided no cues which correctly discriminate between small cities, or between similarly sized cities. This type of explanation draws attention to the fact that in structured environments, not just the predictive validity of a cue, 
	-
	83 

	The space required to plot each of these possible cues is prohibitive, but we can expect to approximate the qualitative results by carrying out the same process for a toy problem of ﬁve objects, and hence 2= 32 possible cues (Figure 7). There are 4 + 3 + 2 + 1 = 10 possible pairwise comparisons between ﬁve objects (ignoring order). In order to represent the manner in which a cue’s performance is distributed across this space of possible comparisons we plot the lower left half of a 5 5matrix containing the o
	5 
	× 
	-

	Figure
	There are 32 possible ways in which a binary cue can apply to ﬁve objects, A–E. The order of the objects on the criterion dimension is described by the inequality A>B>C>D>E. Each of the 32 numbered triangles depicts the judgements made between all possible pairs of objects on the basis of the corresponding cue shown in the table above. Judgements may be correct (grey) or incorrect (black); a blank cell indicates that a cue does not discriminate between the pair of cities involved in the judgement. 
	Figure 7. 

	are indexed by the coordinate () with object value on the criterion decreasing with increasing and increasing with increasing . This ensures that cells near the right-angle of the triangle represent comparisons between objects with dissimilar values on the criterion (e.g., A vs. E), whereas cells near the hypotenuse represent comparisons between objects with similar values on the criterion (e.g., B vs. C). Cells in the upper corner represent comparisons between pairs of objects which both have high values o
	x, y
	x 
	y

	The ﬁrst thing to note about the distribution of possible cues is that there are far fewer of them than there are possible ways of coloring the cells of one of the triangles used to represent each cue (i.e., 3) This indicates that the nature of the problem is constraining the kind of cues that are possible. For example it is impossible for one cue to either deal correctly with all possible comparisons or deal incorrectly with all possible comparisons (i.e., no triangle is entirely grey or black). We can see
	10

	However, it is clear that this reasoning does not straightforwardly apply when continuously valued cues are available to an algorithm which is capable of using them. One continuous cue is sufﬁcient to accurately discriminate between all adjacent objects. Furthermore, a discrete cue with possible values is capable of distinguishing between all of the adjacent pairs of objects. A discrete cue with a valency of 2 is able to correctly make half of these pairwise comparisons without incurring error on the remain
	-
	n 
	n 
	n/

	With this understanding of the space of possible cues in hand, we are in a position to assess the representativeness of the cues made available to the algorithms in the German Cities Problem. The set of cues used in this problem were collected from relevant almanacs containing data on German cities (Ulrich Hoffrage and Ralph Hertwig, pers. comm., 1999). As such the cues are a relatively representative sample of the kind of facts people might know about cities. The manner in which correct and incorrect judge
	-
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	Figure
	Judgement distributions for each of the nine cues made available to the decision-making heuristics in the German Cities Problem. Each triangle represents all possible pairs of cities (because pair order is irrelevant, the upper half of each matrix is redundant, and hence omitted). Cities are arranged in order of increasing population size from left to right and top to bottom. Cues are arranged in order of increasing validity in a ﬂat environment. Grey indicates correct inferences, black indicates incorrect 
	Figure 8. 
	-

	pairwise choice and binary cues. As just argued for the ﬁve-object case, there simply do not exist cues which correctly deal with many comparisons between objects with similar values on the criterion dimension. In order to accurately deal with each comparison along the hypotenuse of the triangle diagrams presented here, 83 binary cues must be consulted. 
	In contrast, the fact that the cues available to the algorithms facing the German Cities Problem do not tend to discriminate amongst small cities, is not a result of some constraint on binary cues. This deﬁciency is due to this set of nine cues being a biased sample of logically possible cues. Is there an explanation for this bias, or must it be attributed to the vagaries of sampling error? There are reasons to believe that the former is most likely. 
	Whilst there may exist cues which discriminate amongst smaller cities, they are unlikely to be recorded in almanacs, which, since larger cities are more interesting to their readers, tend to record facts which are true of large cities, and false of small ones. In addition, these facts are not true of every large city, but tend to be false of almost every small city, ensuring that they tend to discriminate amongst large cities as well as between large cities and small cities, but not to discriminate well amo
	Thus, randomly sampling cues from those made available in the public domain will tend to result in a set of cues which is not representative of the space of possible cues, but which is biased towards those cues suitable to the structure of the problem which they have been selected for. This set of cues will not be able to accommodate a manipulation of environment structure, if this manipulation opposes the natural structure of the problem responsible for their existence in the public domain. In skewing the 
	This argument does not apply solely to the German Cities Problem, but in principle can be generalized to any decision problem. Well adapted decision makers will tend to recognize and attend to cues which are well-suited to the predictive demands of the problem as inﬂuenced by its frequency structure and signiﬁcance structure. This implies that, to the extent that such cues are logically possible, the cues used by such decision makers will tend to discriminate correctly between frequent and/or signiﬁcant pai
	-
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	In concert, the effects outlined above ensure that the structure of the nine cues made available to algorithms in the German Cities Problem favours environments where they are more often called on to choose between pairs of large cities, or between large and small cities (Product and Difference Skew, respectively). For the same reasons, these algorithms will tend to perform poorly when forced to choose more often between small or similarly sized cities (Reciprocal and Similarity Skew, respectively). These g
	In summary, the variation of algorithm performance with environment structure can be traced to several sources. First, some classes of frequency skew are inherently difﬁcult to accommodate due to the nature of binary cues and the pair-
	In summary, the variation of algorithm performance with environment structure can be traced to several sources. First, some classes of frequency skew are inherently difﬁcult to accommodate due to the nature of binary cues and the pair-
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	wise choice paradigm. This argument accounts for the reduced performance on Similarity-Skewed environments. Second, some classes of frequency skew are difﬁcult contingent on the cues available. This argument accounts for the reduced performance on Reciprocal-Skewed environments. Third, some algorithms are more sensitive to environment structure than others and are thus more likely to accommodate particular manipulations. The heuristics assessed here vary in their sensitivity to environment structure, and th
	-
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	ONCLUDING THOUGHTS ON FEQUENCY STRUCTURE 
	3.5. C

	By employing the German Cities Problem as a toy environment, we have shown that frequency structure impacts on the performance of decision-making algorithms. The character of this impact is complex. The presence of environment structure demands that decision-makers trade off general performance against performance on important subsets of test items. As a result, not only the validity of a cue, but the source of this validity is of importance to decision makers. Cues which gain their validity from frequent t
	Furthermore, environment structure interacts with the necessary and contingent characteristics of a decision problem, and the strengths and weaknesses of a particular algorithm, to inﬂuence the performance of that algorithm. 
	-

	4. Signiﬁcance Structure 
	As well as differing in their relative frequency, naturally occurring problems differ in their relative signiﬁcance. Consider a list of decisions which might be faced on the way to work: Which tie should I wear? Should I walk to the bus stop or ride my bicycle? Which bus should I catch? Is it safe to cross the road? How fast should I walk? How fast is that car approaching? Should I jump left or right? How am I going to make that 9:15 meeting now? 
	Clearly these dilemmas differ along many dimensions; some are leisurely, some pressing; some are conscious, some unconscious; some are casual, some weighty. Here we will consider the effects of variation in the importance or gravity of decision problems on the structure and performance of decision-making mechanisms. 
	-

	There are two ways in which the signiﬁcance structure of a decision problem can be mischaracterized. First, the goal of the decision-maker may be misconceived. For example, doctors may be assessed on the accuracy of their diagnoses when what is signiﬁcant to them is not forming an accurate judgement of what ails a patient, but prescribing measures which will alleviate this ailment. Whilst correct diagnoses are clearly a step towards this goal, they do not constitute it. There may be diagnostic errors which 
	There are two ways in which the signiﬁcance structure of a decision problem can be mischaracterized. First, the goal of the decision-maker may be misconceived. For example, doctors may be assessed on the accuracy of their diagnoses when what is signiﬁcant to them is not forming an accurate judgement of what ails a patient, but prescribing measures which will alleviate this ailment. Whilst correct diagnoses are clearly a step towards this goal, they do not constitute it. There may be diagnostic errors which 
	-

	confounded conditions demand the same treatment (see Connolly, this issue, for discussion along these lines). Similarly, the prescription of an incorrect treatment regime may, nonetheless, sometimes result in a cured patient (e.g., prescribing a course of vitamin supplements, complete rest and avoidance of dairy products, when the correct treatment was merely relaxation). Mischaracterising the aims of the decision maker leads to a misunderstanding of what counts as success and what counts as error. 

	The second, and related, manner in which signiﬁcance structure may be misconstrued is in failing to appreciate that different decision problems differ in their signiﬁcance to the decision maker, i.e., failing to discriminate between inconsequential decisions and those of much greater signiﬁcance. A doctor confronted with what appears to be a case of inﬂuenza faces a decision problem which differs from that of a colleague encountering what appears to be a case of meningitis. Errors in treating such cases wou
	-
	-
	-
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	In general, a problem’s signiﬁcance structure is the manner in which the different decision items which constitute the problem differ in terms of their consequences for the decision maker’s goal. For dichotomous decision problems such as the ones considered here, in which a test item’s signiﬁcance can be operationalized as the difference in value between the two possible outcomes of the decision regarding that item, signiﬁcance structure describes the manner in which this difference varies across the space 
	-
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	HE MUSHROOM PROBLEM 
	4.1. T

	Imagine a fungivorous forager which, throughout its lifetime, encounters mushrooms, one after the other. Whilst some of these mushrooms are good sources of valuable nutrition, others contain damaging toxins. When confronted by a mushroom, the forager must decide whether to eat it, or reject it in favor of a safe but mediocre food source assumed to be ever present in the forager’s environment. The forager must make its decisions on the basis of binary cues which it is sensitive to, and which together describ
	-
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	The signiﬁcance of these decisions will vary across the space of mushrooms liable to be encountered by a forager. How will this variation impact on the success of the different foraging strategies that such a forager might employ? In order to answer this question we simulated such a forager, and explored how the perform-
	Figure
	The appearance of each mushroom is characterized by 20 dichotomous cues. The rates of Hits, Misses, False Alarms and correct Rejections have been calculated across the entire set of 8124 mushrooms. Hits are cases in which a cue correctly indicates that a mushroom is edible. Misses are cases in which a cue incorrectly indicates that a poisonous mushroom is edible. False Alarms are cases in which a cue falsely indicates that an edible mushroom is poisonous. Correct Rejections are cases in which a cue correctl
	Figure 9. 
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	ance of various foraging strategies was affected by manipulation of the signiﬁcance structure of the artiﬁcial mushroom environment it inhabited. 
	We utilized Schlimmer’s (1987) database of 8124 different mushrooms from 23 species within the Agaricus and Lepiota families (available from the University of California, Irvine Machine Learning Repository; Blake et al., 1998). Each mushroom was described using 20 binary cues (dichotomized versions of the original data), as shown in Figure 9. Of the 8124 mushrooms, 4208 (51.8%) were classiﬁed as edible, whereas 3916 (48.2%) were classiﬁed as poisonous. The rates at which each cue is able to distinguish pois
	-
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	The signiﬁcance structure of this decision problem can be manipulated by deﬁning different payoff matrices governing a decision maker’s performance. Figure 10 depicts the four signiﬁcance structures we explored. The ﬁrst represents a scheme which assumes no signiﬁcance structure exists. A decision maker receives a point 
	-

	Figure
	Four payoff matrices determining the signiﬁcance structure of the Mushroom Problem. Each cell contains the points awarded for an individual decision. Dashes in the Odor matrix indicate that no mushrooms were present in a particular cell. 
	Figure 10. 

	for each positive response to an edible mushroom and each negative response to a poisonous mushroom, and no points for any other responses. This scheme rewards accurate classiﬁcation and is termed Orthodox since accuracy metrics of this type dominate much of decision-making psychology. A student being tested on his knowledge of mushrooms might be assessed in this way — the student is sent out into the environment with two baskets, one labeled , one labeled . Upon his return, a teacher awards a point for eve
	edible
	poisonous

	This Orthodox signiﬁcance structure treats all successes as equivalent and commensurate, and all errors likewise. However, a forager actually consuming or rejecting mushrooms has not achieved its goals to the same extent by rejecting a poisonous mushroom as by consuming an edible one. Although these are both appropriate behaviors, in the latter case the forager has gained valuable nutrition, in the former it has avoided being poisoned. Similarly, for such a forager, the consequences of the two classes of po
	-
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	The second payoff scheme attempts to capture this signiﬁcance structure to a greater extent through awarding points for eating edible mushrooms, deducting points for eating poisonous mushrooms, and awarding a negligible amount for rejecting mushrooms in favor of the alternative mediocre foodstuff. The payoff 
	The second payoff scheme attempts to capture this signiﬁcance structure to a greater extent through awarding points for eating edible mushrooms, deducting points for eating poisonous mushrooms, and awarding a negligible amount for rejecting mushrooms in favor of the alternative mediocre foodstuff. The payoff 
	matrix is constructed such that eating all mushrooms achieves, on average, the same score as rejecting all mushrooms. This scheme can be considered to offer the forager the choice between a risky, but potentially high value food item (the mushroom) and a safe, but relatively low value food item (the alternative). It is termed Flat, since each poisonous mushroom and each edible mushroom are equivalently poisonous or nutritious. 
	-


	The two environments described so far can be adequately captured by a signal detection paradigm. In varying the points awarded for eating and rejecting mushrooms which are poisonous or edible we have been deﬁning the costs and beneﬁts of the four cells in a signal detection matrix — hits, misses, false alarms and correct rejections. 
	-

	However, signiﬁcance structure can be ﬁner grained than the signal detection picture implies. In the third environment, termed Odor, the value of consuming edible mushrooms and the cost of eating poisonous mushrooms is correlated with their odor. Whilst the fungivore can discriminate between odorous and odorless mushrooms, the signiﬁcance of a decision involving a particular mushroom depends on whether the mushroom smells ‘foul’, ‘ﬁshy’, ‘pungent’, and so forth, that is, on features which are not directly a
	-
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	Furthermore, signiﬁcance structure can sometimes be difﬁcult to capture in the terms of signal detection. For example, in reality poisonous mushrooms may be more dangerous than the deduction of points implies. The fourth environment is identical to the Flat environment save that the consumption of any poisonous mushroom results in the death of the fungivore, that is, an immediate and irreversible assignment of a score of zero points to the forager. This Lethal environment ensures that successes and failures
	-
	-

	These four environments demonstrate the range of possibilities that a problem’s signiﬁcance structure can cover. Real decision problems can be expected to exhibit signiﬁcance structures which are more complex still than those explored here since neither options, nor the evidence upon which to decide between them, need be binary in nature; further, differing outcomes may not be as easily reducible to a single dimensional of utility. In the next section we assess the effects that the four variations of signiﬁ
	We can make some general predictions regarding the effects of these manipulations. For instance, those algorithms tailored to an inappropriate signiﬁcance structure should tend to be outperformed by those which are appropriately tailored. In addition, algorithms tailored to the Lethal environment should be conservative in 
	-

	Figure
	Each cue is treated in one of seven ways. The presence or absence of a cue can prompt a forager to reject (cross) or accept (tick) a mushroom, or to check the next cue (?). Notice that since, across the entire population of mushrooms, the presence of each cue tends to indicate edibility, high-performance foragers might be expected to utilize rules 5, 6, and 7 more than 1, 2, and 3. Rules 3 and 5 always stop search since they propose a deﬁnite action based on the presence or absence of the cue they apply to.
	Figure 11. 

	their food choice, whilst those tailored to the Flat or Odor environments should tend to make errors within a subset of insigniﬁcant mushrooms in comparison to those algorithms tailored to the Orthodox environment, for whom one error is equivalent to any other. 
	HE ALGORITHMS 
	4.2. T

	Here we explore a class of lexicographic decision algorithms. Like Take The Best, described above, these decision heuristics treat evidence one piece at a time and make a decision based on the ﬁrst piece of evidence to suggest a course of action other than checking for more information, i.e., the ﬁrst piece of information that allows a choice to be made. In this case the evidence is in the form of binary cues which are consulted in some order (tied ranks are possible in which case the tied cues are consulte
	To understand how signiﬁcance structure can interact with the structure of decision mechanisms and affect their performance, we will focus on this example task to ﬁnd and compare strategies which perform well within each of the four environments described above. We cannot assess each member of the class of lexicographic rules since, given that cue ranks may be tied, there are over 20! orderings of cues and each ordering can be governed by 7combinations of stopping rules. To ﬁnd lexicographic algorithms whic
	-
	-
	20 

	The genetic algorithm we used (Goldberg, 1989; Holland, 1975; Mitchell, 1996) started with a population of 1000 randomly generated algorithms and assessed the performance of each on the Mushroom Problem under a particular signiﬁcance 
	The genetic algorithm we used (Goldberg, 1989; Holland, 1975; Mitchell, 1996) started with a population of 1000 randomly generated algorithms and assessed the performance of each on the Mushroom Problem under a particular signiﬁcance 
	structure (i.e., in a particular environment). Each assessment involved the particular algorithm encountering 100 mushrooms drawn at random from the population of 8124, eating or rejecting each mushroom, and gaining or losing points as a result. Once each of the 1000 algorithms was assessed, a new population of 1000 algorithms was generated by allowing the better performing algorithms to ‘reproduce’, that is, to be copied into the next generation. This copying procedure was subject to a small chance of erro
	-
	-
	-


	As a result of this assessment, reproduction, and mutation cycle, the population of 1000 algorithms became better and better adapted to the problem it faced. Over many thousands of generations performance increased as the algorithms converged on successful orderings of cues and appropriate stopping rules for these cues. 
	In each of the four environments depicted in Figure 10 we assessed 20 independent populations of 1000 algorithms each for 5000 generations of simulated evolution. During reproduction, there was a 1 in 100 chance that each of an algorithm’s parameters might be mutated. Mutations, when they did occur, consisted of (i) a cue’s rank being replaced by a random value drawn from the set {0.5, 1, 1.5...20, 20.5}, (ii) a cue’s stopping rule being replaced by one drawn at random from the seven possible rules, or (iii
	-
	-
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	For each of the four environments, the top ﬁve (0.5%) foragers from each of the 20 populations at generation 5000 were collected, and their long-term mean performance over 10 000 lifetimes (i.e., 1 000 000 mushrooms) was calculated. The best such long-term mean performance was recorded. Algorithms which failed to achieve a long-term mean performance within 5% of this threshold were discarded. 
	Duplicate equivalent strategies were then excluded. Strategies were deemed equivalent if they exhibited the same cue ordering and applied the same stopping rules to these cues, once redundant cues had been removed. Redundant cues were either those associated with stopping rule 4, those which were never consulted because a cue associated with rule 3 or 5 preceded them in the cue order, or those which, over the course of 10 000 lifetimes, although consulted, had never stopped search. The remaining ‘elite’ str
	HE ELITE STRATEGIES 
	4.3. T

	At this point, we will delve into a speciﬁc detailed analysis of the evolved strategies in these environments to see what general principles we can uncover and to demonstrate the sorts of analytic approaches that can aid in such a search. A ﬁrst indication that the strategies ﬁt for one environment tend to differ from those ﬁt for another is given by the Venn diagram in Figure 12 which demonstrates that of the 93 elite 
	-

	Figure
	Two elite strategies arose in both the Orthodox and Flat environments. The remaining strategies are unique to the environment in which they evolved. 
	Figure 12. 

	strategies found through evolutionary search, only two occurred in more than one environment. 
	How do the elite strategies within one environment resemble each other, and how do they differ from those found in different reward regimes? The set of elite Orthodox strategies is heterogeneous in that many cues feature across the strategy set, and there is little consensus regarding which cues are useful and which are not (Figure 13). In contrast, the other three sets of elite strategies each feature a smaller number of cues, and exhibit a higher degree of consensus regarding which cues are important. Fur
	individual 

	In combination, these results suggest that as the signiﬁcance structure of a decision environment becomes increasingly heterogeneous, i.e., the difference in signiﬁcance between decision items increases, appropriate strategies become increasingly homogeneous and less frugal in cue use. While the set of elite strategies for the Orthodox environment is wide and shallow, those of the Lethal and Odor environments are narrow and deep. This phenomenon is reminiscent of ﬁndings concerning the differences between n
	-
	-
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	The particular cues which feature in elite strategies for the Mushroom Problem can be regarded as falling into three groups. First, a few high validity cues (e.g., odor and bruises) show up in nearly every elite strategy, regardless of which environment the strategy has adapted to. Second, a set of auxiliary cues (e.g., stalk shape and gill-spacing) tend to feature in many of the elite strategies within a particular environment, but do not feature strongly in alternative environments. Third, the remaining u
	-
	-

	532 
	Figure
	The percentage of elite strategies which involve a particular cue in each of the four environments tested. Notice that a core group of high validity cues are attended to by many elite strategies regardless of environment (tall bars at left), while a number of cues are attended to by many strategies within speciﬁc environments (tall bars toward right), and remaining cues may be attended to by individual strategies within an environment (short bars). 
	Figure 13. 

	SETH BULLOCK AND PETER M. TODD 
	Figure
	The mean number of cues involved in the elite strategies from each of the four environments explored. This measure differs signiﬁcantly across the four conditions (-test, < 0.001). Whilst neither Orthodox and Flat, nor Odor and Lethal differ from one another (-test, < 0.5), together Orthodox collapsed with Flat differ signiﬁcantly from Odor collapsed with Lethal (-test, < 0.0001). 
	Figure 14. 
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	gill-color, which is ranked ﬁfth in terms of validity, is never involved in any elite strategy in any environments. 
	Similarly, what marks particular cues as appropriate to particular environments can be hard to trace. The spore-print-color, habitat, and stalk-surface-below-ring cues are present in many of the elite strategies evolved within the Lethal environment. However, these cues share few features which can explain their utility. They are mid-ranking in terms of validity. Although the stalk-surface-blow-ring cue enjoys a low Miss rate, which given the signiﬁcance structure of the the Lethal environment would appear 
	-

	Given that no cue perfectly predicts edibility across the entire set of mushrooms, no cue can initially be used by a lexicographic strategy to identify edible mushrooms without error. Since the consumption of a poisonous mushroom is fatal in the Lethal environment, every successful strategy there must proceed by rejecting subsets of mushrooms on the basis of cues which tend to make correct rejections and few false alarms. It is in this respect that spore-print-color and habitat (and odor and gill-size) exce
	-

	However, this rather involved explanation cannot enable us to state in advance which particular cues will be employed within elite Lethal strategies, but merely to offer a post-hoc analysis of successful strategies. Even in this respect the explanatory strategy is imperfect since it cannot account for why alternative cues were not utilized in place of those that were. For example, there exist cues with lower false alarm rates than spore-print-color and habitat which were not employed to any great degree. Wh
	-

	In the Odor and Flat environments, the distribution of cue usage is even harder to understand. Gill-spacing, a popular cue in the Odor environment, is unremarkable save that it enjoys a low miss rate. However, there is little indication that misses are more crucial in the Odor environment than in the Flat environment, for instance, where the gill-spacing is never utilized by an elite strategy. 
	The reason for the difﬁculty we experience in predicting and explaining the successful cue orderings stems from the properties of lexicographic strategies and our reliance on measures of cue performance derived from their application to the entire space of decisions. A strategy’s highest ranked cue will be consulted in all decisions. However, since this ﬁrst cue may sometimes suggest a course of action (i.e., eating or rejecting) other than checking the value of the next cue, this next cue will only ﬁgure i
	-

	Figure 15 demonstrates this problem by depicting the direction in which cues at each rank in a lexicographic strategy tend to be utilized. Recall that depending on the stopping rule employed in conjunction with a cue, its presence or absence can be the prompt for either positive (eat), negative (reject) or neutral (check next cue) behavior. Rules can be divided into those which tend to consider the presence of a cue to be an indicator of edibility and/or its absence to be an indicator of toxicity, and those
	early 

	The divergence between the performance of a cue over an entire space of problem items (global validity) and its performance across the subset of items which it actually encounters as a consequence of the cues preceding it in a lexicographic 
	-

	Figure
	The percentage of elite strategies which treat cues in the predicted (full bars) versus non-predicted (empty bars) direction across the rank order of cues, for the four environments. Because strategies vary in the number of cues they involve, columns vary in height. Notice that whilst early ranked cues tend to be treated in the predicted direction, the polarity of later cues is not predicted by global validity measures. 
	Figure 15. 

	ordering (conditional validity) can be expected to increase with the rank of a cue, as mentioned above. In addition, the rate at which this divergence increases with rank can be expected to itself increase with the degree to which the signiﬁcance or frequency structure of an environment tends to focus performance on fewer decision items. Consider that in the Orthodox environment, the contribution of each individual success or error on the part of a cue to its validity is equal. In contrast, within the Odor 
	-
	global 

	This issue closely parallels the problem of model reduction in the statistical practice of multiple regression. Many independent variables (cues) may have high predictive power when ﬁtted ﬁrst, that is, exhibit a high global validity. However, when the complete model (all cues) is ﬁtted, the predictive power of each contributing variable will be less than this ﬁrst-ﬁtting measure. Discovering the best set of predictors is a problem which cannot be solved by consulting global measures of validity alone. 
	-

	This problem has implications for lexicographic strategies which order their cues according to global measures of validity, as Take The Best does. Their performance will tend to degrade in increasingly structured environments. This is shown to be true for the Mushroom Problem in Figure 16, which depicts the mean long-term performance of each set of elite strategies in each environment and the performance of a lexicographic strategy with cues ordered according to their global validities. This Take-The-Best-l
	-

	In addition, Figure 16 demonstrates that the ability of strategies evolved within one environment to perform in another varies in an intelligible manner. Whilst the elite strategies evolved within the Orthodox, Flat, and Odor environments perform at essentially the same level within the Orthodox and Flat environments, more of a difference is discernible within the Odor and Lethal environments between ‘foreign’ strategies and those indigenous to the environment. What this demonstrates is that elite strategie
	-
	-
	numbers 

	Figure
	The average mean long-term performance across the four environments of elite strategies evolved for particular environments and a Take-The-Best-like strategy (TTB) that uses cues in order of their global validity. Performance is plotted on the -axis such that a score of 100 would be obtained by an omniscient and hence perfect forager. In the Orthodox and Lethal environments random behavior would achieve a score of zero. In the Flat and Odor environments, random performance would achieve a score of roughly 1
	Figure 16. 
	y

	with mushrooms which are signiﬁcant in their own environment, whereas the errors made by elite Orthodox and Flat strategies are distributed over the space of mushrooms with no concern for their impact in the Odor environment. 
	-

	One possible explanation for the difference between novices and experts noted earlier stems from these observations. If novices do not appreciate the underlying signiﬁcance structure of a domain, but experts do, one would expect that in addition to novices perhaps exhibiting a lower level of overall performance, their pattern of successes and errors would not match that of experts, who are more likely to gain their performance from correctly dealing with problems which they consider to be important and/or f
	In the Lethal environment the difference between well-adapted strategies and interlopers is most evident. This results from the foreign algorithms’ tendency to tolerate a few misses, since their effects can be compensated for by an associated increased number of hits. In the Lethal environment this strategy is clearly maladaptive. 
	-

	The Take-The-Best-like strategy achieves its low level of performance in the Lethal environment by rejecting every mushroom in favor of the alternative food source. Its conservatism or risk aversion stems from the fact that since no single cue is capable of making error-free recommendations of edibility across the whole space of mushrooms, and errors of this kind are lethal, every cue is best used to reject mushrooms (scoring on average 0.18 rather than negative inﬁnity). As a result every cue is ranked equ
	-

	The approach of the elite Lethal strategies falls somewhere between this extreme risk aversion and the blasé attitude to misses exhibited by elite foreign strategies. As discussed above, by using initial cues to exclude particular sets of mostly toxic mushrooms, elite Lethal strategies are able to use subsequent cues to accurately distinguish edible mushrooms from the remainder. In this way they achieve a remarkably competent performance, on average wrongly rejecting (false-alarming) one in 10 edible mushro
	-
	-

	ONCLUDING THOUGHTS ON SIGNIFICANCE STRUCTURE 
	4.4. C

	Using an artiﬁcial foraging task we have demonstrated that manipulating the signiﬁcance structure of a decision problem can have important implications for the success of decision-making algorithms. We have shown that in order to understand the structure and performance of decision makers in structured environments an 
	Using an artiﬁcial foraging task we have demonstrated that manipulating the signiﬁcance structure of a decision problem can have important implications for the success of decision-making algorithms. We have shown that in order to understand the structure and performance of decision makers in structured environments an 
	-

	appreciation of this structure is necessary. Signiﬁcance structure will impact on the performance of strategies in complex ways. Speciﬁcally, using global measures of a cue’s performance will tend to become misleading as environment structure increases, because the disproportionate contribution of a small number of problem items to a cue’s effective performance will cause such global measures of a cue’s utility to deviate from the effective utility of a cue within a particular strategy. This was demonstrate

	5. Overall Conclusions 
	Rather than conceiving of decision-making success as equivalent to some general-purpose measure of accuracy, the relevant measure is one which captures the extent to which a mechanism copes with its environment, meeting the goals of the decision-making agent. Such a measure must take into account the structure of the agent’s environment, including both the environment’s frequency structure and its signiﬁcance structure. Employing this ecologically motivated form of assessment leads to a new vision of what c
	-
	-

	Notes 
	Half ranks were employed so that cues could mutate to fall in between two previously adjacently ranked cues. After reproduction, ranks were renormalized so that they were again consecutive integers. 
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