
Modeling the Perception of Tonal Structure with Neural Nets 
Author(s): Jamshed J. Bharucha and Peter M. Todd 
Source: Computer Music Journal, Vol. 13, No. 4 (Winter, 1989), pp. 44-53 
Published by: The MIT Press 
Stable URL: http://www.jstor.org/stable/3679552 
Accessed: 15/09/2008 12:01 

Your use of the JSTOR archive indicates your acceptance of JSTOR's Terms and Conditions of Use, available at 
http://www.jstor.org/page/info/about/policies/terms.jsp. JSTOR's Terms and Conditions of Use provides, in part, that unless 
you have obtained prior permission, you may not download an entire issue of a journal or multiple copies of articles, and you 
may use content in the JSTOR archive only for your personal, non-commercial use. 

Please contact the publisher regarding any further use of this work. Publisher contact information may be obtained at 
http://www.jstor.org/action/showPublisher?publisherCode=mitpress. 

Each copy of any part of a JSTOR transmission must contain the same copyright notice that appears on the screen or printed 
page of such transmission. 

JSTOR is a not-for-profit organization founded in 1995 to build trusted digital archives for scholarship. We work with the 
scholarly community to preserve their work and the materials they rely upon, and to build a common research platform that 
promotes the discovery and use of these resources. For more information about JSTOR, please contact support@jstor.org. 

The MIT Press is collaborating with JSTOR to digitize, preserve and extend access to Computer Music 
Journal. 

http://www.jstor.org 

http://www.jstor.org/stable/3679552?origin=JSTOR-pdf
http://www.jstor.org/page/info/about/policies/terms.jsp
http://www.jstor.org/action/showPublisher?publisherCode=mitpress
http://www.jstor.org
mailto:support@jstor.org


Jamshed J. Bharucha 
Department of Music 
Dartmouth College 
Hanover, New Hampshire 03755 USA 
bharucha@eleazar.dartmouth.edu 

Peter M. Todd 
Department of Psychology 
Stanford University 
Stanford, California 94305 USA 
todd@psych.stanford.edu 

What can we say about the perception of music by 
the silent majority of listeners, those for whom 
music is written but who neither create music nor 
can articulate their musical experience? How do 
they acquire their demonstrably sophisticated in- 
tuitions about music patterns typical of their cul- 
ture? Experiments in the cognitive psychology of 
music have cast some light on the first question. 
Recent developments in neural net learning now 
enable us to explore answers to the second. 

In this article, we discuss one aspect of the expe- 
rience of the nonmusician listener-contextual in- 
fluences on the perception of pitch. We limit our 
discussion to tonal implications and expectations 
and to memory for pitch sequences. We do not pre- 
sume that this description captures the listener's 
experience in all its intricacy. We first summarize 
some psychological research and then explore how 
neural nets can be employed to model the acquis- 
tion of these phenomena through passive exposure. 

Two forms of tonal expectancy will be dis- 
cussed-schematic and veridical. Schematic expec- 
tancies are culture-based expectancies for events 
that typically follow familiar contexts. Veridical 
expectancies are instance-based expectations for 
events that follow in a particular familiar sequence. 
Schematic and veridical expectancies may conflict, 
since a specific piece of music may contain atypical 
events that do not match the more common cul- 
tural expectations. This conflict, which was at- 
tributed to Wittgenstein by Dowling and Harwood 
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(1985), underlies the tension between what one ex- 
pects and what one hears, and this tension plays a 
salient role in the aesthetics of music (Meyer 1956). 
Schematic expectancies are driven by structures 
that have abstracted regularities from a large num- 
ber of specific sequences. Veridical expectancies 
are driven by encodings of specific sequences. We 
briefly discuss models of both forms of expectancy 
and conclude with a model that subsumes both. 

Two of the classes of nets that have promise for 
this research-auto-associative nets and hierar- 
chical self-organizing nets-are only summarized 
here since their application to music has been de- 
scribed in detail in earlier papers (see Bharucha 
1987a; 1987b; Bharucha and Olney 1989). We focus 
our modeling account on a third class of nets-se- 
quential nets-that learn specific tone sequences 
(i.e., veridical expectancies) and in doing so exhibit 
schematic expectancies as an emergent property. 
The three classes of nets we discuss-auto- 
associative nets, hierarchical self-organizing nets, 
and sequential nets-are neither mutually ex- 
clusive nor entirely redundant. We present them as 
fruitful explorations in musical modeling and con- 
sider that one of our goals for future research is to 
discriminate among them computationally and em- 
pirically and, if necessary, to search for models that 
surpass them. 

Psychological Aspects of Tonal Expectation 

Most people have strong perceptual intuitions about 
the structure of the music of their culture. These 
perceptual intuitions are not typically revealed 
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overtly in performance, composition, or even ver- 
balization, since most people without formal musi- 
cal training lack these skills. Through carefully 
designed psychological experiments, however, lis- 
teners who are unaware of or unable to articulate 
their musical intuitions can nevertheless be shown 
to be sensitive to rather subtle deviations from 
typical musical patterns. 

The writings of music theorists have given us a 
powerful set of hypotheses about the perceptual in- 
tuitions of the average listener. Given the extensive 
training of the music theorists, however, and the 
theoretical constraints implicit in the language 
with which their theories are constructed, these 
hypotheses must be subject to rigorous empirical 
tests before their applicability to the average, un- 
tutored listener is established. Although the results 
of such experiments may typically confirm the hy- 
potheses of music theorists, they are essential for 
building our corpus of knowledge about the percep- 
tual intuitions of untutored listeners. 

Western listeners show from their responses in 
psychological experiments that they recognize de- 
partures from typical tonal patterns. Furthermore, 
they have tacit knowledge of the distance relation- 
ships between tones, chords, and keys in tonal con- 
texts as would be predicted by the work of music 
theorists. For example, subjects judge chords to be 
related to each other in accord with the circle of 
fifths. These intuitions show up in experimental 
tasks as disparate as: 

Direct subjective measures of relatedness and 
expectation (Krumhansl and Kessler 1982; 
Bharucha and Krumhansl 1983; Schmuckler 
1988) 

Memory confusions (Cuddy, Cohen, and Miller 
1979; Krumhansl, Bharucha, and Castellano 
1982; Bharucha and Krumhansl 1983) 

Response time (Bharucha and Stoeckig 1986; 
1987) 

Although the pattern of data is often more con- 
sistent for musically trained subjects on some of 
these tasks, there seems to be little difference be- 
tween musically trained and untrained subjects 

on reaction time tasks that measure the extent to 
which a musical context facilitates the perceptual 
processing of schematically expected events. These 
tasks reveal systematic patterns of tacit knowl- 
edge about the relationship between chords, even in 
the minds of musically untutored subjects who be- 
gin the experiment with profuse apologies about 
being tone deaf. In these experiments (Bharucha 
and Stoeckig 1986; 1987; Bharucha 1987b), subjects 
are instructed to decide whether a target chord is in 
tune or mistuned. Mistuned chords are constructed 
by flattening one of the triadic components. When 
the target chord is preceded by a context (also con- 
sisting of a chord), the response time to judge cor- 
rectly whether the target chord is in tune is mo- 
notonically related to the distance of the target 
from the context along the circle of fifths. 

The above result could, in part, be explained by 
the overlap in harmonic spectra between the con- 
text and the target chords. Closely related chords, 
when played with tones rich with harmonics, have 
spectral components in common. To test this hy- 
pothesis, harmonics shared by context and target 
were removed, giving closely related targets no 
acoustic advantage. The target chord was again rec- 
ognized more quickly following a context to which 
it was closely related (Bharucha and Stoeckig 1987). 

This result establishes definitively that the ex- 
pectations generated by a tonal context, as mea- 
sured by the perceptual facilitation of closely re- 
lated chords, cannot be explained by the harmonic 
series alone. We are compelled to conclude that the 
perceived relationships between chords are learned, 
rather than being somehow inherent in the actual 
sonic stimuli. Since the perceptual facilitation was 
found for nonmusicians as well as musicians, the 
learning must have been passive perceptual learn- 
ing rather than formal musical training. 

Some analogous experiments have been conducted 
with native listeners of other cultures, though this 
literature is less conclusive. These experiments 
have shown, at least for Indian ragas, that native, 
untutored listeners tend to expect tones that are 
typical of familiar musical contexts (Castellano, 
Bharucha, and Krumhansl 1984; Kessler, Hansen, 
and Shepard 1984; Bharucha 1987b). 
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Motivation for Neural Net Modeling 
of Harmonic Expectancies 

Neural net models enable us to explore the extent 
to which these musical intuitions are a conse- 
quence of extended passive exposure to the musical 
regularities of a culture. General purpose learning 
architectures with units that respond to the pres- 
ence of musical features can internalize musical 
regularities by changing the weights of links that 
connect units. The units themselves can plausibly 
be shown to develop their specialization to abstract 
musical features as a result of general principles of 
self-organization. Examples of these adaptive sys- 
tems applied to specific musical phenomena are 
given in the following sections. 

One may ask why complicated, often difficult-to- 
interpret neural net models should be used in the 
psychology of music when there are many perhaps 
simpler, symbolic, rule-based models available. Al- 
though rule-based models of music have been suc- 
cessful at describing the formal structure of some 
musical compositions, and have thus provided valu- 
able hypotheses and analytic constraints, they fall 
short as psychological theories. They fail to ac- 
count for the acquisition of the rules they postu- 
late, and this ad hoc postulation of rules is not 
typically limited to a small set of assumptions of 
which the others are a natural consequence. 

Paramount among the psychological constraints 
on modeling is the constraint that the postulation 
of cognitive structures must be accompanied by 
plausible accounts of the innateness or learnability 
of the structures in question. Few psychological 
models meet this strict scrutiny, including our 
own. We suggest, however, that given alternative 
models or classes of models, the most parsimonious 
is to be preferred. Neural net models have the ca- 
pacity to supersede the more traditional rule-based 
models on parsimony grounds because of their 
ability to account for the acquisition of intuitions 
through passive perceptual learning. 

Neural net models have the potential to account 
for perceptual learning of musical structure with 
only two classes of constraints. First, the net may 
be constrained by general principles of neural archi- 
tecture and by constraints specific to the learning 

algorithms. Second, there must be pitch-tuned in- 
put units see (Linsker 1986) however, for an ac- 
count of how, in vision, even elementary feature 
detectors can develop from general constraints on 
the net). The auditory system reveals a tonotopic 
mapping of pitch, supporting this constraint. It is 
important to note that no constraints on the specif- 
ics of musical structure are required; they emerge 
as a result of the net's exposure to music. Rule-based 
systems, in contrast, typically have as many con- 
straints as specific rules of musical structure, with 
little justification about the origins of those rules. 

Schematic Expectancies 

Neural net models can be used to demonstrate the 
passive learning of schematic expectancies in three 
different musical domains. 

Learning Culture-Specific Modes 
With Auto-associators 

The extent to which patterns of schematic expec- 
tancy for the tones in musical scales can be cap- 
tured by an auto-associative net has been explored 
in earlier work (Bharucha and Olney 1989). Using 
the delta rule (Rumelhart and McClelland 1986), 
this net is taught to map from a complete set of 
scale tones as input to the same scale set as output. 
It essentially acts as a pattern completion device 
that suggests, implies, or "fills in" missing tones at 
its output when presented with a subset of a scale 
as input. 

Such a net exposed to major and harmonic minor 
scale sets correctly generates patterns of expec- 
tancy consistent with the establishment of keys, 
exhibits the desired ambiguities of key, and can be 
shown to tacitly embody the structural constraints 
abstractly summarized by the circle of fifths. Analo- 
gously, a net exposed to Indian ragas fills in ex- 
pected tones when presented with subsets of the 
raga tones. 

An auto-associative net trained on the scales of 
one culture can be tested with the scales of an- 
other, making predictions about tonal implications 
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generated in the minds of listeners hearing an un- 
familiar form of music. A net trained on the West- 
ern major and minor scales seems to assimilate 
some Indian ragas to the Western scales, sometimes 
shifting the tonic (Bharucha and Olney 1989). 

Learning Hierarchical Representations 
Through Self-Organization 

Hierarchical relationships, such as between tones, 
chords, and keys, can be learned passively by algo- 
rithms for self-organization (Kohonen 1984; Linsker 
1986; Rumelhart and McClelland 1986; Carpenter 
and Grossberg 1987). Most self-organization mecha- 
nisms assume the prior existence of abstract units 
into which the input units feed. These abstract 
units initially have no specialization, since the 
links from the input units are initially random. 
However, repeated exposure to commonly occur- 
ring patterns causes some of these abstract units to 
tune their responses to these patterns. 

One of the more straightforward, self-organization 
algorithms, called competitive learning (Rumelhart 
and McClelland 1986) accomplishes this as follows. 
For any given pattern some arbitrary abstract unit 
will respond more strongly than any other, simply 
because the weights are initially random. Of the 
links that feed into this unit, those that contributed 
to its activation are strengthened and the others are 
weakened. This unit's response will subsequently 
be even stronger in the presence of this pattern and 
weaker in the presence of other, dissimilar pat- 
terns. In similar fashion, other abstract units learn 
to specialize to other patterns. This process can be 
continued to even more abstract layers, at which 
units become tuned to patterns that commonly oc- 
cur in the lower layer. 

The overwhelming preponderance of major and 
minor chords in the popular Western musical en- 
vironment would drive such a net to form units 
that respond accordingly. Furthermore, the typical 
combinations in which these chords are used would 
drive units at a more abstract layer to register larger 
organizational units such as keys. The notion that 
individual neurons specialize to respond to com- 
plex auditory patterns has some preliminary em- 

pirical support from single-cell recording studies on 
animals (Weinberger and McKenna 1988). 

Once these chord and key units have organized 
themselves, the net models the implication of tones, 
chords, and keys given a set of tones. A hierarchical 
constraint satisfaction net built on this organiza- 
tion has been reported in earlier work (Bharucha 
1987a; 1987b). In this net, called MUSACT, activa- 
tion spreads from tone units to chord and key units 
and reverberates phasically through the net until a 
state of equilibrium is achieved. At equilibrium, all 
constraints inherent in the net have been satisfied. 

Given a key-instantiating context, the unit repre- 
senting the tonic becomes the most highly acti- 
vated. The other chord units are activated to lesser 
degrees the further they are from the tonic along 
the circle of fifths. 

Two behaviors of the net illustrate its emergent 
properties. First, the above activation pattern does 
not require the tonic chord to be played at all. An F 
major chord followed by a G major chord will cause 
the C major chord unit to be the most highly acti- 
vated. Second, the circle of fifths implicit in the ac- 
tivation pattern cannot be accounted for on the 
basis of shared tones alone. If a C major context 
chord is played, the D major chord unit is more 
highly activated than the A major chord unit, even 
though the latter shares one tone with the sounded 
chord (C major) and the former shares none at all. 
A careful tracking of the net's behavior as activa- 
tion reverberates and before it converges to an equi- 
librium state reveals a lower initial activiation of D 
major over A major, reflecting an initial bottom-up 
influence of shared tones. As activation has a chance 
to reverberate back from the key units (a top-down 
influence), this advantage is lost, and D major over- 
takes A major. So the circle of fifths is truly an 
emergent property of the simultaneous satisfac- 
tion of elementary associations between tones and 
clusters of tones. See Bharucha (1987a; 1987b) for 
details. 

Learning With Sequential Nets 

Some of the schematic expectancies that are essen- 
tially sequential, as in chord progressions, can be 
modeled with sequential nets. The architecture 
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the three major and three 
minor chords of a key, and 
the output units represent 
expectancies for these 
chords. 

0 000 0 Q Expectancies 

8 () () ( ~ ( (^) Q Context + Input 

shown in Fig. 1 supports the learning of schematic 
expectancies from exposure to sequences. It has 
three layers of units (input, hidden, and output) and 
links that feed forward only. The input units regis- 
ter the sequence as it is heard, and the activations 
generated at the output units represent the learned 
schematic expectancy for the next event. 

The input units, labeled "context + input," rep- 
resent chords, one unit for each of the six most 
common chord functions-the three major and 
three minor chords in a given key, i.e., the triads 
built upon the first six degrees of the major scale. 
We use a pitch-invariant representation in which all 
sequences are normalized to a common tonic. Each 
unit has a self-recurrent connection with an iden- 
tical fixed weight between 0.0 and 1.0. These re- 
current links implement a decaying memory of 
the sequence presented up to any given point in 
time. The first chord in a sequence causes the cor- 
responding input unit to be activated, while the 
other input chord units remain off. When the sec- 
ond chord is presented, its corresponding input unit 
is activated, while the unit corresponding to the 
first chord has its original activation multiplied by 
the weight on the recurrent link. This process of 
activating new units and decreasing the activation 
level of previous units in an exponential fashion 
continues for the entire chord sequence. If a chord 
is repeated in the sequence, a new surge of activa- 
tion is added into the decaying activation already 
present at the corresponding unit. In this way, the 
"context + input" vector represents a decaying 

memory of the sequence (the context) plus the cur- 
rent event (the current input from the environment). 

We envision the input units being activated by 
chord units in MUSACT after they have been nor- 
malized to a common tonic. This normalization is 
necessary because the chord sequences cannot be 
encoded in a pitch-specific format of the kind used 
in MUSACT, since most people have no absolute 
identification of pitch in the long term. The se- 
quences must therefore be encoded in a format that 
is invariant under transposition. In the short term, 
however, transpositional invariance is biased by ab- 
solute pitch information held by MUSACT. Cuddy, 
Cohen, and Miller (1979) found that after present- 
ing a standard melody, comparison melodies were 
more likely to be judged the same when they 
were transposed to a related key than when they 
were transposed to an unrelated key. The resulting 
constraints on modeling are thus: absolute pitch in- 
formation is held in short-term memory without 
sequential constraints (as in MUSACT), and se- 
quences are held in long-term memory in a pitch- 
invariant format with sequential constraints. Only 
the latter aspect of the model will be discussed here. 

Each input unit in the net is linked to each hid- 
den unit, and each hidden unit is linked to each 
output unit. The activation of unit i is a logistic 
function of the weighted sum of activations re- 
ceived by the unit plus the unit's bias. 

Prior to learning, all weights and biases in the net 
are initialized to small, non-zero real numbers se- 
lected at random. For any given sequence, the "con- 
text + input" units register the sequence as it is 
presented to the net. The presentation of each suc- 
cessive event in the sequence causes activation to 
propagate through the net beginning at the input 
units, generating expectancies for the next event as 
output. Initially, these expectancies will be ran- 
domly generated by the untrained net. 

Learning is accomplished by changing the weights 
and biases incrementally after each event so as to 
reduce the disparity between what the net expects- 
its output-and what actually occurs-the next 
event in the sequence. Each event in the sequence 
is thus the target value used to train the expectan- 
cies generated by the previous sequence events. 
The algorithm employed to change the weights and 
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Fig. 1. A back-propagation 
network that develops 
schematic sequential ex- 
pectancies from exposure 
to individual sequences. 
The input units represent 
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Fig. 2. The pattern of ac- 
tivation induced by a con- 
text converges on the 
probability distribution of 
chords given that context. 

Numbers 1-6 represent 
the six major and minor 
chords built upon major 
scale degrees 1-6. 
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biases is the generalized delta rule (also known as 
back-propagation) developed by Rumelhart, Hinton, 
and Williams (1986). 

The net was exposed to sequences that embody 
the transition probabilities of chord functions that 
are representative of Western music of the common 
practice era, estimated from Piston (1978). Any 
other set of sequences could have been used, and 
we plan to explore other actual and possible styles. 
After repeated exposure to the sequences, the net 
learns to expect (i.e., produce as output) the sche- 
matic distribution of chords for each successive 
event in a sequence. This net will not learn individ- 
ual sequences, but will learn to match the condi- 
tional probability distributions of the sequence set 
to which it is exposed. In other words, each output 
vector approaches a probability vector representing 
the schematically expected distribution of chords 
following the sequence context up to that point. 

Figure 2 shows the actual chord probability dis- 
tribution and the net's output activation following 
each of six single-chord contexts. The net clearly 
matches the probability distributions in each case. 
The numbers 1-6 refer to the major and minor 
triads built upon the first six tones of the major 
scale. Note that the net has learned some of the se- 
quential regularities of Western harmony. A tonic 
context chord generates strong expectations for the 
dominant and subdominant (top panel), a super- 
tonic context chord generates expectations for the 
dominant and submediant (second from top), and so 
on. No rules needed to be encoded in order for these 
patterns to emerge; they simply reflect the inter- 
nalization of probability distributions through ex- 
tended exposure to individual sequences. We would 
argue that this model is considerably more plau- 
sible and parsimonious as an account of perception 
than are rule-based models. 

Probability matching, as observed in the above 
net, has been shown in a number of psychological 
experiments. The basic result is that when trying 
to predict the next event after having witnessed 
events with a certain probability distribution, pre- 
diction patterns tend to align themselves with the 
probability distribution. This result is notable be- 
cause it is not the optimal prediction strategy from 
the point of view of maximizing the expected re- 
turn, which is to always predict the most likely 
event and never predict any other. 

Probability matching accounts for the aura of 
schematic expectation that is generated at any given 
point in a musical sequence, in which no one event 
is expected to the exclusion of others; some events 
are highly expected, some are highly unexpected, 
and others have intermediate expectancies. Graded 
levels of schematic expectancy provide composers 
with alternatives that are only subtly different in 
their typicality and induce in the listener a range of 
expectancy confirmations and violations. 

A prediction that derives from this result is that 
if subjects are asked to rate how appropriate a chord 
sounds following a single-chord context, the pattern 
of ratings would resemble the expectancy vector. 
Figure 3 shows a strong relationship between the 
rating judgments on this task, obtained by Bharucha 
and Krumhansl (1983), and the expectancies gener- 
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Fig. 3. Scatter plot showing 
the relationship between 
relatedness judgments ob- 
tained from subjects and 
activation generated by 
the network for a number 
of different contexts. 

Fig. 4. A network that 
learns individual se- 
quences (veridical expec- 
tancies) and acquires 
schematic properties. 

Output activation of network 
and relatedness judgments of human subjects 
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dditional context) Q Q Q Q Input 

3o The "additional context" units in Fig. 4 individu- 
4, ate sequences by name or other discriminating con- 

text. In our simulations, there is one such unit 
(which we shall call a name unit) for each sequence 
to be learned by the net. Jordan called these units 

3 plan units, since he was simulating the production 
0.0 0.1 0.2 0.3 0.4 0.5 0.6 rather than the perception of sequences. Two se- 

Activation quences that are identical up to a point and then 
diverge can be learned by this net because the in- 
puts for the two sequences would have a different 

ated by our simulation. The sequential neural net name unit turned on for each sequence. This set of 
model thus picked up the same sort of schematic units could also be used to encode richer contexts 

expectancies about chord sequences that we find in that might include rhythmic, timbral, and other 
human listeners. factors that contribute to the recognition of famil- 

iar musical sequences. 
We exposed a net of the above sort, with six "con- 

Veridical Expectancies text + input" units and six output units represent- 
ing the six diatonic major and minor chords, to 50 

The modeling described above focused on the ge- sequences of seven successive chords each. Fifty 
neric cultural expectations and implications em- "additional context" name units were needed to 
bodied in the schematic expectancies of music distinguish these 50 learned sequences. 
listeners. But listeners know more than just what After the net had learned these sequences, we 
musical structures are likely in various contexts in studied its ability to learn two new sequences, 
their culture; they know exactly what event is to one with schematically expected transitions and one 
occur next at particular points in particular pieces with schematically unexpected transitions. The two 
of music with which they are familiar. sequences were matched in terms of the number of 

The sequential schematic expectancy model de- distinct chords in each. The sequence with sche- 
scribed above can be modified to learn specific se- matic transitions started out with a lower summed 

quences-and thus veridical expectancies-by the squared error (on the output units) than the atypical 
addition of input units that serve to distinguish in- sequence and was learned more quickly. The net 
dividual sequences in some way. The resulting net thus learned a novel sequence more quickly if it 
structure, with the new group of input units la- conformed to familiar regularities. This result is in 
beled "additional context," is shown in Fig. 4. This accord with the prevalent intuition that it is diffi- 
architecture is based on the sequential net design cult to learn sequences of music from other cul- 

proposed by Jordan (1986) and used by Todd (1988) tures or from unfamiliar historical periods-that is, 
to model melody learning. sequences that violate schematic expectancies. 
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Fig. 5. Number of cas- 
caded activation steps to 
reach asymptote for three 
types of transitions. The 

Combining Schematic and Veridical 
Expectancies in the Same Sequential Net 

Even though the sequential net of Fig. 4 was em- 
ployed to account for veridical expectancies, the 
above result suggests that this net acquires proper- 
ties that are often attributed to a cultural schema. 
The net seems to inadvertently acquire these sche- 
matic properties even when the "additional con- 
text" units are operative, that is, even when it serves 
as a memory for individual sequences. More sup- 
portive evidence for this passive acquisition of se- 
quential schematic expectancies from veridical 
sequence learning can be found by exploring the 
net's behavior when using cascaded activation. 

Cascading was first described by McClelland 
(1979) and McClelland and Rumelhart (1988) and 
involves restricting the amount of activation that 
can pass through the net at a given time, thereby 
enabling one to observe the development of unit ac- 
tivation levels over time. The time-scale involved 
in cascading is different from the one involved in 
the generation of sequences by the net; the multi- 
step cascading process occurs within each step 
of the outer sequence. Cascading is typically per- 
formed after the net has been trained to produce 
the proper sequential outputs, and it is then used to 
watch the activations of units develop from their 
initial values to the final asymptotic values they 
end up with as a result of training. For any given 
input, the input units exert only a fraction of their 
influence on the hidden units during the initial cas- 
cade time steps. The hidden units in turn exert 
only a fraction of their influence on the output 
units. Over succeeding time steps, each layer re- 
leases a greater fraction of its activation to the next 
layer, until the units have reached the asymptotic 
activations on which they were trained. 

The cascading algorithm is as follows. The net 
input, neti,t to a hidden or output unit at time-step 
t is determined as follows: 

neti, = k,[wijait] + (1 - k)net_i, l 

where the standard net input value, computed by 
summing up the products of the weights wi, and the 
current activations a t of the units connected to 
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unit i, is multiplied by the constant k and added to 
a fraction of the previous net input. 

The constant k is the cascade rate, which deter- 
mines how fast activations in the net build up to 
their asymptotic levels. 

When cascaded activation is used in a veridical 
sequence net trained with both schematically ex- 
pected and unexpected events, the highly expected 
events reach asymptotic activation much more 
quickly than unexpected ones. In this way, we can 
see the effect of learned cultural schemas on the 
net's performance with particular sequences. In one 
simulation, we trained the net with sequences that 
embodied only schematically expected transitions 
with the exception of one unexpected transition in 
one sequence. After all the sequences were learned 
to criterion, including the unexpected transition, 
the net was tested with the cascading algorithm. 
Figure 5 shows the number of cascade time-steps it 
took the activation of the single "on" output unit 
to reach the trained veridical asymptote (here 0.9), 
starting from its asymptotic activation at the previ- 
ous sequence step (usually close to 0.0) for each of 
three transition-type groups. A unique chord transi- 
tion X-Y is one in which chord X is followed by 
chord Y in only one sequence and is therefore highly 
unexpected. A fixed chord transition X-Y is one in 
which X is always followed by Y and is therefore 
highly expected. The third category includes all the 
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other transitions of intermediate expectancy. As 
can be seen in the figure, unique transitions took 
longer to reach asymptote than fixed transitions, 
and the others fell in between. 

These results indicate that the net used was em- 
bodying cultural schema information in its weights, 
which yielded fast cascade response times for ex- 
pected transitions. In contrast, these schematic 
biases had to be overcome when unexpected transi- 
tions were being produced, leading to longer cas- 
cade times in the unique and other transition type 
cases. We can thus conclude that this net learned 
to embody cultural schematic expectancies, even 
though it was trained to produce merely specific 
veridical expectancies (the sequential outputs). 

Conclusion 

The studies reported here have demonstrated that 
neural net models embodying simple assumptions 
can learn musical schemas by passive exposure. 
These assumptions include the existence of general 
purpose learning architectures that implement 
competitive learning and supervised learning, and 
the existence of tonotopic pitch mapping in the 
auditory system. With these assumptions, the psy- 
chological regularities that have previously been at- 
tributed to rules develop in the net's behavior as an 
automatic consequence of exposure to a structured 
musical environment. Even though this environ- 
ment typically only includes examples of veridical 
expectancies in the form of specific pieces of mu- 
sic, schematic expectancies of the likelihood of 
various musical events in the culture are also ab- 
stracted from this exposure. 
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